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Let H(R+ × Rn) be a class of entire functions on R, KL is a class of quasipolynomials of the form
φ(x) =

∑n
i=1Qr(x) exp [αrx], where αr ∈ L ⊆ C, αk ̸= αl, for k ̸= l, Qr(x) are given polynomials.

Each quasipolynomial defines a differential operator φ
(

∂
∂λ

)
of finite order on the class of entire

function, in the form
∑m

r=1Qr

(
∂
∂λ

)
exp

[
αi

∂
∂λ

] 
λ=0

.

In the strip Ω = {(t, x) ∈ Rn+1 : t ∈ {([T1, T2] ∪ [T3, T4]), x ∈ Rn}, we consider of the system of
equations

∂3Ui

∂t3
+

n∑
j=1

{
aij

(
∂

∂x

)
∂2Uj

∂t2
+ bij

(
∂

∂x

)
∂Uj

∂t
+ cij

(
∂

∂x

)}
Uj(t, x) = 0, (1)

∫ T2

T1

Uik(t, x)dt+

∫ T4

T3

Uik(t, x)dt = φik(x), k = 1, 2, 3, (2)∫ T2

T1

tUik(t, x)dt+

∫ T4

T3

tUik(t, x)dt = φik(x). i = 1, ..., n, (3)∫ T2

T1

t2Uik(t, x)dt+

∫ T4

T3

t2Uik(t, x)dt = φik(x). (4)

Where aij
(

∂
∂x

)
, bij

(
∂
∂x

)
, cij

(
∂
∂x

)
, are differential expression with entire symbols aij(λ) ̸= 0, bij(λ) ̸=

0, cij(λ) ̸= 0.

Let be η(λ) =
∫ T2

T1
Wn−1(t, λ)dt+

∫ T4

T3
Wn−1(t, λ)dt is a certain functionW (t, λ) is a solution of equa-

tion
(

dn

dtn +
∑n

i=1 ai(λ)
dn−i

dtn−i

)
W (t, λ) = 0, satisfies conditions Wn(t, λ)


t=0

= 1, Wn−1(t, λ)


t=0

=

0, W (t, λ)


t=0

= 0.

Denote be P =

{
∆(λ) = 0, λ ∈ C

}
set zeros of function η(λ).

Theorem 1. Theorem. Let φik(x) ∈ KL, i = 1, ..., n, j = 1, ..., n then the class KL\P exist and
unique solution of the problem (1)-(4). Solution of the problem (1)-(4) can be represented in the form

Ui(t, x) =

3∑
k=1

n∑
p=1

φkp

(
∂

∂x

){
1

η(λ)
Tkjp(t, λ)W (t, λ) exp[λx]

}
λ=0

,

where Tkjp(t, λ) = lT
(
d
dt , λ

)
is transpose of a matrix

(
d
dt , λ

)
.

Solution of the problem (1) - (4) according to the differential-symbol method [1], [2] exists and
unique in the class of quasi-polynomials. Be means of the differential-symbol method [1], [2] we
construct of the problem (1)-(4). This problem is a continuos works [3] - [6].
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