CLASSIFICATION OF SMOOTH STRUCTURES ON LINE WITH TWO ORIGINS

Mykola Lysynskyi

(Institute of Mathematics of NAS of Ukraine Str. Tereshchenkivska, 3 Kyiv, 01024 Ukraine) E-mail: m.lysynskyi@imath.kiev.ua

Sergiy Maksymenko

(Institute of Mathematics of NAS of Ukraine Str. Tereshchenkivska, 3 Kyiv, 01024 Ukraine) E-mail: maks@imath.kiev.ua

We classified differentiable structures on a line \mathbf{L} with two origins begin a non-Hausdorff but T_1 one-dimensional manifold obtained by "doubling" 0.

Definition 1. Let τ be the standard topology on \mathbb{R} . Then $\mathbf{L} = \mathbb{R} \sqcup \bar{0}$ is a disjoint union of \mathbb{R} with some point $\bar{0}$ endowed with the following topology:

$$\eta = \tau \cup \{(W \setminus 0) \cup \{\bar{0}\} : 0 \in W \in \tau\}$$

whose elements are elements of τ and also open neighborhoods of 0 in which 0 is replaced with $\bar{0}$.

For $k \in \mathbb{N} \cup \{\infty\}$ let H^k be the group of homeomorphisms h of \mathbb{R} such that h(0) = 0 and the restriction of $h \mathbb{R} \setminus 0$ is a C^k -diffeomorphism. It contains a subgroup D^k consisting of C^k -diffeomorphisms of \mathbb{R} also fixing 0.

Definition 2. Let H be a group and C, D be two subgroups. Then for each $h \in H$ the following subset of H:

$$ChD = \{chd^{-1} : c \in C, d \in D\}$$

is called the (C, D)-coset of h. If C = D, then DhD is also called the D-double coset of h. The set

$$Dh^{\pm 1}D := DhD \cup Dh^{-1}D = \{chd^{-1}, ch^{-1}d^{-1} : c, d \in D\}$$

is called the (D, \pm) -double coset of h.

We are referring to the book by J. Lee [1] and paper of F. Takens [2] for the definition of C^k -structures. So the problem of classification of smooth C^k -structures on **L** can be stated as follows:

Problem 3. Describe the orbits of the action of the group $\mathcal{H}(\mathbf{L})$ on the set of \mathcal{C}^k -structures on M.

It is shown that there is a natural bijection between C^k -structures on \mathbf{L} up to a C^k -diffeomorphism and double coset classes $D^k \setminus H^k/D^k$ which can be regarded as the orbit space of the action $D^k \times D^k$ on H^k by the rule $(a,b)h = ahb^{-1}$.

Theorem 4. Let $k \in \mathbb{N} \cup \{\infty\}$. Then

- \mathcal{C}^k -structures on \mathbf{L} up to a \mathcal{C}^k -diffeomorphism are in one-to-one correspondence with the set $\mathcal{D}(\mathbb{R},0)\setminus\mathcal{H}_0^k(\mathbb{R})^{\pm 1}/\mathcal{D}(\mathbb{R},0)$ of $(\mathcal{D}(\mathbb{R},0),\pm)$ -double coset classes;
- while C^k -structures on \mathbf{L} up to a C^k -diffeomorphism fixing 0 and $\bar{0}$ are in one-to-one correspondence with the set $\mathcal{D}(\mathbb{R},0) \setminus \mathcal{H}_0^k(\mathbb{R})/\mathcal{D}(\mathbb{R},0)$ of $\mathcal{D}(\mathbb{R},0)$ -double coset classes.

References

- [1] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.
- [2] Floris Takens. Characterization of a differentiable structure by its group of diffeomorphisms. Bol. Soc. Brasil. Mat., $10(1):17-25,\ 1979.\ doi:10.1007/BF02588337.$