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Let [a0; a1, ..., an, ...] — continued fraction, where a0 ∈ Z+, aj > 0 for all j ∈ N . Consider left shift
operator

T ([0; a1, a2, ..., an, ...]) = [0; a2, a3, ..., an+1, ...].

Let fn(x) = λ(T−n((0;x])), where x ∈ (0; 1], λ(·) — Lebesgue measure. The problem of finding
f(x) = lim

n→+∞
fn(x)

for classical continued fractions was posed by Gauss. Kuzmin [1] showed that f(x) = log2(x+ 1) and
|fn(x)− log2(1 + x)| ≤ Cβ(nη) ∀x ∈ (0; 1]

for η = 0, 5 some C > 0 and β ∈ (0; 1). Levy [2] showed that it is possible to take β = 0, 7 and η = 1.
Wirsing [4] showed that, for the constant γ ≈ 0, 3037

ψ(x) = lim
n→+∞

fn(x)− log2(1 + x)

(−γ)n
∀x ∈ (0; 1],

where ψ(x) — analytic function.
It is known [3] that for each t ∈ [0, 5; 1] there exists a sequence (bn) such that bn ∈ {0, 5; 1} for

all n ∈ N and t = [0; b1, ..., bn, ...]. The last image is called A2-image. A countable set of numbers
t ∈ [0, 5; 1] has two A2-images.
Theorem 1. For A2-image the following conditions are true for some numbers C1 > C2 > 0 and for
each n ∈ N

|fn+1(x1)−fn+1(x2)| = |fn((1+x1)−1)−fn((1+x2)−1)|+|fn((0, 5+x1)−1)−fn((0, 5+x2)−1)|∀x1, x2 ∈ [0, 5; 1];

C2|x2 − x1| ≤ |fn(x1)− fn(x2)| ≤ C1|x2 − x1| ∀x1, x2 ∈ [0, 5; 1], x1 ≤ x2.
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