Homotopy types of stabilizers of Morse-Bott functions on 3-manifolds

Sergiy Maksymenko (Institute of Mathematics of NAS of Ukraine) *E-mail:* maks@imath.kiev.ua

Let M be a smooth 3-manifold, $\mathcal{D}(M)$ be the group of all C^{∞} diffeomorphisms of M. For every smooth function $f: M \to \mathbb{R}$ denote by

$$\mathcal{S}(f) = \{h \in \mathcal{D}(M) \mid f \circ h = f\}$$

the stabilizer of f with respect to the natural action of $\mathcal{D}(M)$ on the space of all C^{∞} functions on M. It consists of diffeomorphisms leaving invariant each level set of f. Endow $\mathcal{S}(f)$ with the corresponding strong C^{∞} Whitney topology.

Let B be a submanifold of M. Then a regular neighborhood of B is a vector bundle $p: E \to B$ defined on an open neighborhood E of B in M and being a smooth retraction onto B. In that case a function $g: E \to \mathbb{R}$ is called 2-homogeneous if $g(tx) = t^2g(x)$ for all $x \in E$ and $t \ge 0$.

Definition 1. Say that a Morse-Bott function $f : M \to \mathbb{R}$ is 2-homogeneous if for every critical submanifold B of f of dimension 1 and 2 there exists a tubular neighborhood $p: E \to B$ and a 2-homogeneous on fibers function $g: E \to \mathbb{R}$ such that f = g near B.

Notice that in general (due to Morse-Bott lemma) f is 2-homogeneous only locally at each critical point x of f.

Now let $f: M \to \mathbb{R}$ be a C^{∞} Morse-Bott function taking constant values at boundary components of M. Let also Γ be the Kronrod-Reeb graph of f, being the quotient of M by the partition into connected component of every level set of f, and $p: M \to \Gamma$ be the natural projection.

Say that an edge e of Γ is *internal* if its vertices have degrees ≥ 2 , i.e. they correspond to nonextremal critical submanifolds of f. At each edge e of Γ fix a point x_e and put $N_e = p^{-1}(x_e)$. Thus, N_e is a closed subsurface of M on which f takes a constant value.

Theorem 2. Let $f: M \to \mathbb{R}$ be a 2-homogeneous Morse-Bott function. Let also n be the total number of those N_e for which

- the edge e is internal and
- N_e is a 2-sphere or a projective plane.

Then the higher homotopy groups of S(f) are n-powers of the corresponding 1-times higher homotopy groups of 2-sphere:

$$\pi_k \mathcal{S}(f) = \underbrace{\pi_{k+1} S^2 \times \cdots \times \pi_{k+1} S^2}_{n}, \quad k \ge 2.$$

In particular, if there are no such spheres and projective spaces, then $\mathcal{S}(f)$ is aspherical.