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Let’s suppose that H? = {(z,y) | y > 0} is an upper half-plane with the Riemannian metric
dz? + dy?

5 . It is called a hyperbolic plane and has a constant negative Gaussian curvature —1. Besides,
Y

H? is a Hadamard space, which is a complete Riemannian manifold of nonpositive sectional curvature.

Between two any points x,y € H? there is a unique geodesic Ozy- S0 we can define a notion of a
geodesically convex (or just conver) set in hyperbolic plane — it is a set that for two arbitrary points
x and y of its 0, belongs to this set. Particularly, the mapping

p:H? x H? = R, p(x,y) = l(04,), 2,y € H?,

where ¢ denotes a length of curve in H?, satisfies all the axioms of metric space.
We also can define a notion of convex function in H?Z.

Definition 1. We will call a parametrization v : [0,1] — H? of the geodesics between points a and b
in H?, 4(0) = a, (1) = b, standard, if for all a € (0;1) the equality

pla,y(a)) = of
holds. Here ¢ denotes a length of the appropriate geodesics.

Definition 2. A function f : H? — R is called convez in a convex set A C H?, if for arbitrary points
71,72 € A and a standard parametrization v : [0, 1] — H? of the geodesics between them, v(0) = 2o,
~v(1) = x1, next inequality holds:

Va € [0,1]: f(y(a)) < af(er) 4+ (1 — @) f(z2). (1)
Definition 3. Let’s fix in H? any mutually distinct points z1, ..., zx, where N € N, and such positive

N
numbers wi, ..., wy,a that Y wg = 1. Open weighted N -foci ball, or weighted N -foci ball, is a set
k=1

A= {z e B |wip(z,21) + - +wy p(z,2N) < a}, (2)

where x1,...,xn are called foci of the weighted N -foci ball, a is called a radius of the weighted N -foci
ball, w1, ..., wy are called weights of the foci x1,...,TxN.

We can define closed weighted N-foci balls the same way, having replaced the symbol “<” by the
symbol “<” in the formula (P).
Let’s fix any point xop € H? and define the distance function for it:

f:H? SR, f(z) = plz,x0), z € H2
Theorem 4. The distance function f is convex in the hyperbolic plane H?2.

It is known, that such a function is convex in any Hadamard space [2]. In this work we got a direct
proof of convexity of f for the case of the hyperbolic plane.
From the convexity of f we obtain another result.

Theorem 5. All open and closed weighted N -foci balls are geodesically convex sets in the hyperbolic
plane H?.
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We also proved geodesical convexity of 1-foci ball, which is a hyperbolic ball, with geometrical
methods.
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