ACTiON OF DERiVATiONS ON POLYNOMiALS AND ON JACOBiAN DERiVATiONS

Oleksandra Kozachok

(Taras Shevchenko National University of Kyiv, 64, Volodymyrska street, 01033 Kyiv, Ukraine) *E-mail:* sashulychka@ukr.net

Anatoliy Petravchuk

(Taras Shevchenko National University of Kyiv, 64, Volodymyrska street, 01033 Kyiv, Ukraine) *E-mail:* petravchuk@knu.ua

Let K be an arbitrary field of characteristic zero. Denote by $A := \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring, and by $R := \mathbb{K}(x_1, \ldots, x_n)$ the field of rational functions in *n* variables, respectively. A K-linear map $D: A \rightarrow A$ is called a K-derivation on *A* if $D(fg) = D(f)g + fD(g)$ for any $f, g \in A$. The vector space $W_n(\mathbb{K})$ (over \mathbb{K}) of all K-derivation is a Lie algebra with respect to the Lie bracket $[D_1, D_2] = D_1D_2 - D_2D_1, D_1, D_2 \in W_n(\mathbb{K})$. Recall that every element $D \in W_n(\mathbb{K})$ can be uniquely written in the form

$$
D = f_1 \frac{\partial}{\partial x_1} + \dots + f_n \frac{\partial}{\partial x_n}, f_i \in A.
$$

The latter means that $W_n(\mathbb{K})$ is a free module of rank *n* over *A* with the free generators $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$ *∂xn* (see, for example $[3]$, $[4]$).

Every element *D* from $W_n(\mathbb{K})$ acts naturally on polynomials from *A* and on $W_n(\mathbb{K})$ itself (by multiplication). Recall that a polynomial $f \in A$ is a Darboux polynomial for a derivation $D \in W_n(\mathbb{K})$ if $D(f) = \lambda f$ for some $\lambda \in A$, the polynomial λ is called a cofactor for *D*. One can consider the Darboux polynomials as "eigenvectors" for the derivation *D* with polynomial "eigenvalues". These (non-constant) polynomials (if they do exist) play significant role in theory of differential equations because for a derivation $D = f_1 \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x_1} + \cdots + f_n \frac{\partial}{\partial x_n}$ *∂xn* one can consider an autonomous system of differential equations of the form

$$
\frac{dx_1}{dt} = f_1(x_1,\ldots,x_n),\ldots,\frac{dx_n}{dt} = f_n(x_1,\ldots,x_n)
$$

and Darboux polynomials for *D* are very useful for searching solutions of this system (see, for example, $[1], [2]$ $[1], [2]$ $[1], [2]$.

We study normalizers of polynomials and derivations under the action of $W_n(\mathbb{K})$ on A and on itself (by multiplication) respectively. For any $f \in A$ one can consider the "normalizer" $N(f)$ in $W_n(\mathbb{K})$ of the form

$$
N(f) = \{ T \in W_n(\mathbb{K}) \mid T(f) = \lambda f \text{ for some } \lambda \in A \},
$$

i.e. $N(f)$ is the set of all the derivations for which f is a Darboux polynomial. This normalizer is a subalgebra of the Lie algebra $W_n(\mathbb{K})$ and it acts on the principal ideal $(f) = Af$ of the ring A. The restriction $\hat{N}(f)$ of the Lie algebra $N(f)$ on Af is characterized in the next statement.

Theorem 1. *The Lie algebra* $\widehat{N}(f)$ *is isomorphic to a subalgebra of the semidirect sum* $W_n(\mathbb{K}) \times A$.

Analogously for any $D \in W_n(\mathbb{K})$, one can consider the normalizer of *D* in $W_n(\mathbb{K})$ of the form

$$
N(D) = \{ T \in W_n(\mathbb{K}) \mid [T, D] = \lambda D \text{ for some } \lambda \in A \}
$$

 $(N(D))$ is obviously the usual normalizer of the subalgebra AD in the Lie algebra $W_n(\mathbb{K})$). An analogous characterization of *N*(*D*) is obtained.

Further, we consider more detailed the Lie algebra $W_2(\mathbb{K})$ and denote for convenience $A = \mathbb{K}[x, y]$. Let $f \in A, f \neq 0$. The polynomial f defines a derivation $D_f \in W_2(\mathbb{K})$ by the rule: $D_f(h) = \det J(f, h)$ for any $h \in \mathbb{K}[x, y]$ (here $J(f, h)$ is the Jacobi matrix for f and h). The derivation D_f is called the Jacobian derivation associated with the polynomial *f*. Note that all the Jacobian derivations form a subalgebra of $W_2(\mathbb{K})$ which coincides with the subalgebra $\mathfrak{sa}_2(\mathbb{K})$ consisting of all divergence-free derivations(see, for example [[5](#page-1-4)]). If for some derivation $T \in W_2(\mathbb{K})$ there exists a Jordan chain consisting of polynomials

$$
T(f_1) = \lambda f_1 + f_2, \dots, T(f_{k-1}) = \lambda f_{k-1} + f_k, T(f_k) = \lambda f_k
$$

for some $\lambda \in \mathbb{K}$, $k \geq 1$ then we prove the next statement

Theorem 2. *Let* $T \in W_2(\mathbb{K})$ *acts on polynomials* f_1, \ldots, f_k *by the rule*

$$
T(f_1) = \lambda f_1 + f_2, \dots, T(f_{k-1}) = \lambda f_{k-1} + f_k, T(f_k) = \lambda f_k
$$

for some $\lambda \in \mathbb{K}$, $k \geq 1$. *Then the equalities hold:*

$$
[T, D_{f_1}] = (\lambda - divT)D_{f_1} + D_{f_2}, [T, D_{f_2}] = (\lambda - divT)D_{f_2} + D_{f_3}, \dots,
$$

$$
[T, D_{f_k}] = (\lambda - divT)D_{f_k}.
$$

The proof of this result is based on the next statement which is of independent interest.

Proposition 3. Let $T \in W_2(\mathbb{K})$, $f \in \mathbb{K}[x, y]$ and $T(f) = g$ for some polynomial $g \in \mathbb{K}[x, y]$. Then $[T, D_f] = (-div T)D_f + D_g$. And conversely, if $[T, D_f] = (-div T)D_f + D_g$ for some $g \in A$, then $T(f) = g + c$ *for some* $c \in \mathbb{K}$ *.*

REFERENCES

- [1] Llibre Jaume, Zhang Xiang: Darboux theory of integrability in \mathbb{C}^n , taking into account the multiplicity. *Journal of Differential Equations*. 2009; v.246, issue 2, pp.541–551, doi.org/10.1016/j.bulsci.2009.06.002
- [2] Andrzej J. Maciejewski, Maria Przybylska: Darboux polynomials and first integrals of natural polynomial Hamiltonian systems. *Physics Letters A*. 2004; v.326, issues 3-4, pp.219–226, doi.org/10.1016/j.physleta.2004.04.034
- [3] Nowicki A.: *Polynomial derivations and their rings of constants*. Uniwersytet Mikolaja Kopernika, Torun, 1994.
- [4] Nowicki A., Nagata M.: Rings of constants for k-derivations in $k[x_1, \ldots, x_n]$. *J. Math. Kyoto Univ.*, 1988; Vol. 28, N.**1**, pp.111-118.
- [5] Petravchuk A.P., Iena O.G.: On centralizers of elements in the Lie algebra of the special Cremona group SA2(K). *J. Lie Theory*, 2006; v.16, no.3, pp.561–567.