PERiODiC POiNT THEOREM FOR MAPPiNGS CONTRACTiNG TOTAL PAiRWiSE DiSTANCE

Evgeniy Petrov

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk, Ukraine) *E-mail:* eugeniy.petrov@gmail.com

We consider a new type of mappings in metric spaces so-called mappings contracting total pairwise distance on *n* points, see [1]. It is shown that such mappings are continuous. A theorem on the existence of periodic points for such mappings is proved and the classical Banach fixed-point theorem is obtained like a simple corollary as well as the fixed point theorem for mappings contracting perimeters of triangles.

Everywhere below by $|X|$ we denote the cardinality of the set X. Let (X, d) be a metric space, *|X|* ≥ 2, and let *x*₁, *x*₂, …, *x*_{*n*} ∈ *X*, *n* ≥ 2. Denote by

$$
S(x_1, x_2, \dots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)
$$

the sum of all pairwise distances between the points from the set $\{x_1, x_2, \ldots, x_n\}$, which we call *total pairwise distance*.

Definition 1. Let $n \geq 2$ and let (X, d) be a metric space with $|X| \geq n$. We shall say that $T: X \to X$ is a *mapping contracting total pairwise distance on <i>n points* if there exists $\alpha \in [0,1)$ such that the inequality

$$
S(Tx_1, Tx_2, \dots, Tx_n) \leq \alpha S(x_1, x_2, \dots, x_n)
$$
\n⁽¹⁾

holds for all *n* pairwise distinct points $x_1, x_2, \ldots, x_n \in X$.

Note that the requirement for $x_1, x_2, \ldots, x_n \in X$ to be pairwise distinct is essential, which is confirmed by the following proposition.

Proposition 2. *Suppose that in Definition 1 inequality (1) holds for any <i>n* points $x_1, x_2, \ldots, x_n \in X$ $with \vert \{x_1, x_2, \ldots, x_n\} \vert = k$, where $2 \leq k \leq n-1$. Then *T* is a mapping contracting total pairwise *distance on k points.*

Proposition 3. *Mapping contracting total pairwise distance on* m *points,* $m \geq 2$, *is a mapping contracting total pairwise distance on n points for all* $n > m$ *.*

Proposition 4. *Mappings contracting total pairwise distance on n points are continuous.*

Let *T* be a mapping on the metric space *X*. A point $x \in X$ is called a *periodic point of period n* if $T^n(x) = x$. The least positive integer *n* for which $T^n(x) = x$ is called the prime period of *x*. Note that a fixed point is a point of prime period 1.

Theorem 5. Let $n \geq 2$, (X, d) be a complete metric space with $|X| \geq n$ and let $T: X \to X$ be a *mapping contracting total pairwise distance on n points in X. Then T has a periodic point of prime period* $k, k \in \{1, \ldots, n-1\}$ *. The number of periodic points is at most* $n-1$ *.*

Let (X, d) be a metric space. Then a mapping $T: X \to X$ is called a *contraction mapping* on X if there exists $\alpha \in [0, 1)$ such that

$$
d(Tx, Ty) \leq \alpha d(x, y) \tag{2}
$$

for all $x, y \in X$.

Corollary 6. *(Banach fixed-point theorem) Let* (*X, d*) *be a nonempty complete metric space with a contraction mapping* $T: X \to X$ *. Then* T *admits a unique fixed point.*

The following definition was introduced in [2]. In particular, it is a partial case of Definition 1 when $n=3$.

Definition 7. Let (X, d) be a metric space with $|X| \ge 3$. We shall say that $T: X \to X$ is a *mapping contracting perimeters of triangles* on *X* if there exists $\alpha \in [0, 1)$ such that the inequality

 $d(Tx,Ty) + d(Ty,Tz) + d(Tx,Tz) \leq \alpha(d(x,y) + d(y,z) + d(x,z))$

holds for all three pairwise distinct points $x, y, z \in X$.

The following statement was proved in [2,Theorem 2.4] and it is a direct consequence of Theorem 5 in the case $n=3$.

Corollary 8. Let (X, d) , $|X| \geq 3$, be a complete metric space and let $T: X \to X$ be a mapping *contracting perimeters of triangles on X. Then T has a fixed point if and only if T does not possess periodic points of prime period* 2*. The number of fixed points is at most two.*

Proposition 9. *Suppose that under the supposition of Theorem 5 the mapping T has a fixed point* x^* , which is a limit of some iteration sequence $x_0, x_1 = Tx_0, x_2 = Tx_1, \ldots$ such that $x_i \neq x^*$ for all $i = 1, 2, \ldots$ *Then* x^* *is the unique fixed point.*

Recall that for a given metric space *X*, a point $x \in X$ is said to be an *accumulation point* of *X* if every open ball centered at *x* contains infinitely many points of *X*.

Proposition 10. Let $n \geq 2$, (X, d) be a metric space, $|X| \geq n$, and let $T: X \to X$ be a mapping *contracting total pairwise distance on n points. If x is an accumulation point of X, then inequality (2) holds for all points* $y \in X$ *.*

Corollary 11. Let $n \geq 2$, (X,d) be a metric space, $|X| \geq n$, and let $T: X \to X$ be a mapping *contracting total pairwise distance on n points. If all points of X are accumulation points, then T is a contraction mapping.*

REFERENCES

- [1] E. Petrov. Periodic points of mappings contracting total pairwise distance. https://arxiv.org/abs/2402.02536, 2024.
- [2] E. Petrov. Fixed point theorem for mappings contracting perimeters of triangles *J. Fixed Point Theory Appl.*, 25, Article No. 74, 2023.