On the semigroup of non-injective monoid endomorphisms of some extension of THE BICYCLIC MONOID

Inna Pozdniakova

(Ivan Franko National University of Lviv) E-mail: inna.pozdniakova@lnu.edu.ua

Oleg Gutik

(Ivan Franko National University of Lviv) E-mail: oleg.gutik@lnu.edu.ua

Let $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ be the semigroup defined in [1] with the two-element family \mathscr{F} of inductive subset of ω . Without loss of generality we may assume that $\mathscr{F} = \{[0, \infty), [1, \infty)\}.$

In the paper [2] we study injective endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω . We describe the elements of the semigroup $End^1_*(B^{\mathscr{F}}_{\omega})$ of all injective monoid endomorphisms of the monoid $B_{\omega}^{\mathscr{F}}$.

This work is a continuation of [2].

Fix an arbitrary non-negative integer k. For all $i, j \in \omega$ we define transformations γ_k and δ_k of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the following way

$$(i, j, [0, \infty))\gamma_k = (i, j, [1, \infty))\gamma_k = (ki, kj, [0, \infty)).$$

 $(i, j, [0, \infty))\delta_k = (ki, kj, [0, \infty))$ and
 $(i, j, [1, \infty))\delta_k = (k(i+1), k(j+1), [0, \infty))$

By $End_0^*(B_\omega^{\mathscr{F}})$ we denote the semigroup of all non-injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F} = \{[0,\infty),[1,\infty)\}.$

Theorems 1 and 2 describe the algebraic structure of the semigroup $\boldsymbol{End}_0^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$.

Theorem 1. If $\mathscr{F} = \{[0,\infty),[1,\infty)\}$, then for any non-injective monoid endomorphism \mathfrak{e} of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ only one of the following conditions holds:

- (1) \mathfrak{e} is the annihilating endomorphism, i.e., $\mathfrak{e} = \gamma_0 = \delta_0$;
- (2) $\mathfrak{e} = \gamma_k$ for some positive integer k;
- (3) $\mathfrak{e} = \delta_k$ for some positive integer k.

Theorem 2. Let $\mathscr{F} = \{[0, \infty), [1, \infty)\}$. Then for all positive integers k_1 and k_2 the following conditions hold:

- (1) $\gamma_{k_1}\gamma_{k_2} = \gamma_{k_1k_2};$ (2) $\gamma_{k_1}\delta_{k_2} = \gamma_{k_1k_2};$
- (3) $\delta_{k_1} \gamma_{k_2} = \delta_{k_1 k_2};$ (4) $\delta_{k_1} \delta_{k_2} = \delta_{k_1 k_2}.$

References

- [1] O. Gutik, M. Mykhalenych. On some generalization of the bicyclic monoi, Visnyk Lviv. Univ. Ser. Mech.–Mat., 90, 2020, p. 5–19 (in Ukrainian).
- O. Gutik, I. Pozdniakova. On the semigroup of injective monoid endomorphisms of the monoid B_{ω}^{φ} with the two-elements family \mathscr{F} of inductive nonempty subsets of ω , Visnyk L'viv. Univ. Ser. Mech.-Mat, 94, 2022, p. 32–55.