Volodymyr Prokip

(IAPMM NAS of Ukraine, Naukova Str. 3b, Lviv, 79060) E-mail: v.prokip@gmail.com

Let R be a factorial domain with identity $e \neq 0$. Notations: $R_{n,m}$ and $R_{n,m}[\lambda]$ are sets of $(n \times m)$ matrices over the domain R and the polynomial ring $R[\lambda]$ respectively, 0_n and I_n are the zero and the identity $n \times n$ matrices respectively, $\mathbb C$ is the field of complex numbers, $\mathbb R$ is the field of real numbers and \mathbb{Z} is the ring of integers.

It is said that an $n \times n$ matrix B is a square root of the matrix $A \in \mathbb{R}_{n,n}$ if $B^2 = A$. The computation of matrix square roots arise in a variety of application domains, including in physics, signal processing, optimal control theory, and many others. The problem of finding square roots from a matrix A over $\mathbb C$ or \mathbb{R} is well studied (see [1]-[10] and references therein). Unlike square roots of the complex numbers \mathbb{C} , the square root of a matrix over \mathbb{C} may not exist. For example, the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in \mathbb{C}_{2,2}$ has no square roots. However, for a nonsingular matrix A over $\mathbb R$ there always exists a square root over $\mathbb C$. We note that the existence of a square root of a matrix A over a field depends on the structure of its elementary divisors corresponding to zero eigenvalues. The structure of square roots over a principal ideal domain of the matrix I_n was written in [14].

It is easy to make sure that for nonsingular matrix $A \in \mathbb{R}_{n,n}$ does not always have a square root over R. For the matrix $A = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix} \in \mathbb{Z}_{2,2}$ there is no square root over \mathbb{Z} . However, the matrix $B = \begin{bmatrix} i & 0 \\ -i & i \end{bmatrix}$ over the ring of Gaussian integer $\mathbb{Z}[i]$ is the square root of A. In this report we give

conditions under which for a matrix $A \in \mathbb{R}_{n,n}$ there exists a square root over R.

Let R be a factorial domain. For the matrix $A \in \mathbb{R}_{n,n}$ there exists a square root over R if and only if the matrix equation $X^2 = A$ is solvable over R. This equation is solvable if and only if the polynomial matrix $A(\lambda) = I_n \lambda^2 - A$ admits the representation in the form $A(\lambda) = (I_n \lambda - B)(I_n \lambda + B)$, where $B \in \mathbf{R}_{n,n}$. From the last equality we have

$$\det A(\lambda) = a(\lambda) = b(\lambda)\widetilde{b}(\lambda), \tag{1}$$

where $b(\lambda), b(\lambda) \in \mathbb{R}[\lambda]$ – are monic polynomials of degree n. It is evident that condition (1) is the

necessary condition for the existence of a square root of the matrix $A \in \mathbf{R}_{n,n}$. For the matrix $A \in \mathbf{R}_{n,n}$ and the polynomial $b(\lambda) = \lambda^n + \sum_{i=1}^n b_i \lambda^{n-i} \in \mathbf{R}[\lambda]$ (a divisor of the characteristic polynomial of $A(\lambda) = I_n \lambda^2 - A$) we construct the matrices

$$T_{A} = \begin{bmatrix} \vdots & \vdots \\ O_{n} & A^{3} \\ A^{2} & O_{n} \\ O_{n} & A^{2} \\ A & O_{n} \\ O_{n} & A \\ I_{n} & O_{n} \\ O_{n} & I_{n} \end{bmatrix} \in \mathbf{R}_{n(n+1),2n}, \qquad M_{b} = \begin{bmatrix} I_{n} & I_{n}b_{1} & I_{n}b_{2} & \dots & I_{n}b_{n-1} & I_{n}b_{n} \end{bmatrix} \in \mathbf{R}_{n,n(n+1)},$$

$$N_{b} = \begin{bmatrix} I_{n}b_{1} & I_{n}b_{2} + A & I_{n}b_{3} & \dots & I_{n}b_{n-1} & I_{n}b_{n} & O_{n} \end{bmatrix} \in \mathbf{R}_{n,(n+1)n}.$$

$$N_b = \begin{bmatrix} I_n b_1 & I_n b_2 + A & I_n b_3 & \dots & I_n b_{n-1} & I_n b_n & O_n \end{bmatrix} \in \mathbf{R}_{n,(n+1)n}.$$

With matrices T_A , M_b and N_b we associate the $(n \times 2n)$ matrices $M_A = M_b T_A$ and $N_A = N_b T_A$.

2 V. Prokip

In the future, we denote by $d_A(\lambda)$ the g.c.d. minors of (n-1)-order of the matrix $A(\lambda)$. By virtue of Theorem 1 in [11], we obtain the following statement.

Proposition 1. Let a matrix $B \in \mathbb{R}_{n,n}$ be a square root of the matrix $A \in \mathbb{R}_{n,n}$, i.e. $B^2 = A$ and $\det(I_n\lambda - B) = b(\lambda)$. If $\left(b(\lambda), \frac{\det A(\lambda)}{b(\lambda)}, d_A(\lambda)\right) = e$, then the square root B is uniquely determined by the characteristic polynomial $b(\lambda)$ for the matrix A.

The proof of the following statements are based on results of papers [12] and [13].

Theorem 2. Let $A \in \mathbb{R}_{n,n}$ and let $b(\lambda) = \lambda^n + \sum_{i=1}^n b_i \lambda^{n-i} \in \mathbb{R}[\lambda]$ be a divisor of the characteristic polynomial of the matrix $A(\lambda) = I_n \lambda^2 - A$, i.e. $\det A(\lambda) = b(\lambda)\tilde{b}(\lambda)$. If $(b(\lambda), \tilde{b}(\lambda), d_A(\lambda)) = e$, then for matrix A there exists a square root B with characteristic polynomial $b(\lambda) = \det(I_n \lambda - B)$ if and only if the equation $XM_A = N_A$ is solvable. If the square root B exists, then matrix B is uniquely determined by its characteristic polynomial $b(\lambda)$.

Corollary 3. Let $A \in \mathbb{R}_{n,n}$ and let $b(\lambda) = \lambda^n + \sum_{i=1}^n b_i \lambda^{n-i} \in \mathbb{R}[\lambda]$ be a divisor of the characteristic polynomial of the matrix $A(\lambda) = I_n \lambda^2 - A$, i.e. $\det A(\lambda) = b(\lambda)\tilde{b}(\lambda)$. If $d_A(\lambda) = \text{const}$, then for matrix A there exists a square root B with characteristic polynomial $b(\lambda) = \det(I_n \lambda - B)$ if and only if the equation $XM_A = N_A$ is solvable. If the square root B exists, then matrix B is uniquely determined by its characteristic polynomial $b(\lambda)$.

References

- [1] F. Andreas, B. Hashemi. Verified computation of square roots of a matrix. SIAM J. Matrix Anal. Appl., 31(3): 1279–1302, 2010.
- [2] G.W. Cross, P. Lancaster. Square roots of Complex Matrices. Linear Multilinear Algebra, 1(4): 289–293, 1974.
- [3] P. Del Moral, A. Niclas. A Taylor expansion of the square root matrix function. J. Math. Anal. Appl., 465(1), 259–266, 2018.
- [4] F.R. Gantmakher. The theory of matrices. Vol.131. American Mathematical Soc., 2000.
- [5] N.J. Higham. Functions of matrices: theory and computation. Society for Industrial and Appl. Math., Philadelphia, PA, USA, 2008.
- [6] R. Horn, Ch. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
- [7] C.R. Johnson, K. Okubo, R. Reams. Uniqueness of Matrix Square Roots and an Application. Linear Algebra Appl., 323: 51–60, 2001.
- [8] R.V. Kolyada, О.М. Melnyk, V.M. Prokip. Про квадратні корені матриць над довільним полем. *Наукові записки* Укр. акад. друкарства, 2: 56–64, 2019. doi: 10.32403/1998-6912-2019-2-59-56-64
- [9] T.J. Moir. A study on square root control-systems. J. Comput. Appl. Math., 406: Article 113938, 2022.
- [10] J. Nichols. A new algorithm for computing the square root of a matrix. Rochester Institute of Technology. Rochester, New York, 2016.
- [11] V.M. Prokip. On the uniqueness of the unital divisor of a matrix polynomial over an arbitrary field *Ukrain. Mat. Zh.*, 45(6), 884–889, 1993.
- [12] V.M. Prokip. On the factorization of polynomial matrices over the domain of principal ideals. Ukrain. Mat. Zh., 48(10), 1628–1632, 1996.
- [13] V.M. Prokip. Polynomial matrices over a factorial domain and their factorization with given characteristic polynomials *Ukrain. Mat. Zh.*, 50(10), 1644–1647, 1998.
- [14] V.M. Prokip. Canonical form of involutory matrices over the domain of principal ideals with respect to similarity transformations. *J. Math. Sci.*, 258.4: 437–445, 2021.