Fundamental solution of non-Archimedean pseudo-differential equation of P-adic argument

Mariia Serdiuk

(Institute of Mathematics of the National Academy of Sciences of Ukraine)

E-mail: mariia.v.serdiuk@gmail.com

The Vladimirov-Taibleson pseudo-differential operator D^{α} plays a role of a differential operator in the p-adic analysis (see [1, 3]). The analogue of the wave equation for radial functions in t on non-Archimedean spaces

$$D_t^{\alpha} u - D_r^{\alpha, n} u = 0 \tag{1}$$

was studied in [2].

In present work the fundamental solution of a more general Cauchy problem for the functions of two p-adic variables, radial in t, was found. The main result is stated in Theorem 2. Theorem 3 proves the uniqueness of the solution in the Lizorkin space of locally constant functions $\Phi(\mathbb{Q}_p^n)$, and Theorem 4 gives an estimate of the norm of the solution in L^1 -space.

Let $0 < \alpha < 1$, $\beta > 0$. Consider the eigenvalue problem

$$D^{\alpha}u = \lambda u, \ \lambda = p^{\beta N}, \ N \in \mathbb{Z},$$
 (2)

where u is not identically zero.

We also suppose that

$$\beta = K\alpha \text{ for some } K \in \mathbb{N}. \tag{3}$$

Proposition 1. If the condition (3) holds, the equation (2) has the set of solutions in $\Phi(\mathbb{Q}_p)$ of the following form for $N \in \mathbb{Z}$:

$$u_N(t) = \begin{cases} C_N p^{KN} (1 - \frac{1}{p}), & |t|_p \le p^{-KN}; \\ -C_N p^{KN-1}, & |t|_p = p^{-KN+1}; \\ 0, & |t|_p \ge p^{-KN+2}. \end{cases}$$

$$(4)$$

Let $0 < \alpha < 1$, $\beta > 0$. We consider the Cauchy problem

$$D_{|t|_p}^{\alpha} u(|t|_p, x) - D_x^{\beta} u(|t|_p, x) = 0, \ (t, x) \in \mathbb{Q}_p^+ \times \mathbb{Q}_p^n,$$
 (5)

$$u(0,x) = u_0(x), \ x \in \mathbb{Q}_n^n, \tag{6}$$

where $u = u(|t|_p, x)$ is a radial function with respect to $t, n \ge 1$.

Theorem 2. Let $0 < \alpha < 1$, $\beta > 0$ such that the condition (3) holds. Suppose that the function u_0 is in $\Phi(\mathbb{Q}_p)^n$. Then the Cauchy problem (5)-(6) has a solution $u = u(|t|_p, x)$, radial in t, that belongs to the space $\Phi(\mathbb{Q}_p^+)$ for each $x \in \mathbb{Q}_p$, and belongs to $\Phi(\mathbb{Q}_p^n)$ for each $t \in \mathbb{Q}_p^+$.

If the condition (3) does not hold, then the equation (5) has only a zero solution $u(t,x) \equiv 0$, $t,x \in \mathbb{Q}_p^+ \times \mathbb{Q}_p$.

The solution built in the proof of Theorem 2 has the following form

$$u(|t|_{p}, x) = (\mathcal{F}_{\xi \to x}^{-1} \hat{u})(|t|_{p}, x) = \left((\mathcal{F}_{\xi \to x}^{-1} b) * u_{0} \right) (|t|_{p}, x), \ (t, x) \in \mathbb{Q}_{p}^{+} \times \mathbb{Q}_{p}^{n}, \tag{7}$$

We consider the problem (5)-(6) in the class of generalized functions, radial in t.

Denote by $\Phi'(\mathbb{Q}_p^+, \Phi'(\mathbb{Q}_p^n))$ the set of distributions over the test function space $\Phi(\mathbb{Q}_p^n)$, with values in $\Phi'(\mathbb{Q}_p^n)$.

2 M. Serdiuk

Theorem 3. Let $F \in \Phi'(\mathbb{Q}_p^+, \Phi'(\mathbb{Q}_p^n))$ be a generalised solution of the equation (5), that is

$$\langle \langle F, D_t^{\alpha} \varphi_1 \rangle, \varphi_2 \rangle = \langle \langle F, \varphi_1 \rangle, D_x^{\beta} \varphi_2 \rangle,$$

for any $\varphi_1 \in \Phi(\mathbb{Q}_p^+)$, $\varphi_2 \in \mathbb{Q}_p$. If F is radial in t, then $F \in \mathcal{D}(\mathbb{Q}_p^+, \Phi'(\mathbb{Q}_p^n))$. If, in addition, F(0,x) = 0, then $F(t,x) \equiv 0$.

It follows from Theorem 3 that the solutions of the Cauchy problems constructed in Theorem 2 are unique in the class of radial in t, bounded locally constant functions.

Theorem 4. Suppose that the conditions of Theorem 2 hold. Then the solution of the problem (5)-(6), defined in (7), satisfies the following estimate in $L^1(\mathbb{Q}_p^n)$ in variable x

$$||u(|t|_p, \cdot)||_{L_1(\mathbb{Q}_n^n)} \le p^{2n\gamma} ||u_0||_{L_1(\mathbb{Q}_n^n)}, \tag{8}$$

where $\gamma \geq \frac{2}{K}$ is a positive constant.

References

- [1] S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of p-Adic Distributions, Cambridge University Press, 2010.
- [2] A.N. Kochubei, A Non-Archimedean Wave Equation, Pacif. J. Math, 235(2) (2007), 245-261.
- [3] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994