On the semigroup of injective monoid endomorphisms of a some extension of the bicyclic semigroup

Marko Serivka

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) *E-mail:* marko.serivka@lnu.edu.ua

Oleg Gutik

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) *E-mail:* oleg.gutik@lnu.edu.ua

In this paper we shall follow the semigroup terminology of [5].

By ω we denote the set of all non-negative integers.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω . For any $F \in \mathscr{P}(\omega)$ and any integer n we put $n + F = \{n+k: k \in F\}$ if $F \neq \emptyset$ and $n+\emptyset = \emptyset$. A subfamily $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is called ω -closed if $F_1 \cap (-n+F_2) \in \mathscr{F}$ for all $n \in \omega$ and $F_1, F_2 \in \mathscr{F}$. For any $a \in \omega$ we denote $[a] = \{x \in \omega : x \ge a\}$.

On the set $B_{\omega} = \omega \times \omega$ we define the semigroup operation "." in the following way

$$(i_1, j_1) \cdot (i_2, j_2) = \begin{cases} (i_1 - j_1 + i_2, j_2), & \text{if } j_1 \leq i_2; \\ (i_1, j_1 - i_2 + j_2), & \text{if } j_1 \geq i_2. \end{cases}$$

It is well known that the bicyclic monoid is isomorphic to the semigroup B_{ω} .

The following construction is introduced in [1].

Let \mathscr{F} be an ω -closed subfamily of $\mathscr{P}(\omega)$. On the set $\mathbf{B}_{\omega} \times \mathscr{F}$ we define the semigroup operation "." in the following way

$$(i_1, j_1, F_1) \cdot (i_2, j_2, F_2) = \begin{cases} (i_1 - j_1 + i_2, j_2, (j_1 - i_2 + F_1) \cap F_2), & \text{if } j_1 \leq i_2; \\ (i_1, j_1 - i_2 + j_2, F_1 \cap (i_2 - j_1 + F_2)), & \text{if } j_1 \geq i_2. \end{cases}$$

In [1] is proved that if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω -closed then $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$ is a semigroup. Moreover, if an ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\mathbf{I} = \{(i, j, \varnothing) : i, j \in \omega\}$ is an ideal of the semigroup $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$. For any ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$oldsymbol{B}^{\mathscr{F}}_{\omega} = \left\{ egin{array}{cc} (oldsymbol{B}_{\omega} imes \mathscr{F}, \cdot) / oldsymbol{I}, & ext{if } arnothing \in \mathscr{F} \ (oldsymbol{B}_{\omega} imes \mathscr{F}, \cdot), & ext{if } arnothing \notin \mathscr{F} \end{array}
ight.$$

is defined in [1].

In the paper [2] injective endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω are studies. Here the authors describe the elements of the semigroup $End_*^1(B_{\omega}^{\mathscr{F}})$ of all injective monoid endomorphisms of the monoid $B_{\omega}^{\mathscr{F}}$, and show that Green's relations $\mathscr{R}, \mathscr{L}, \mathscr{H}, \mathscr{D}, \text{ and } \mathscr{J}$ on $End_*^1(B_{\omega}^{\mathscr{F}})$ coincide with the relation of equality. In [3, 4] the semigroup $End^1(B_{\omega}^{\mathscr{F}})$ of all monoid endomorphisms of the monoid $B_{\omega}^{\mathscr{F}}$ is studied.

Example 1. Let $\mathscr{F}^3 = \{[0), [1), [2)\}$. Fix an arbitrary positive integer k. We define the transformation $\alpha_{[k]}$ of the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^3}$ in the following way

$$(i, j, [p))\alpha_{[k]} = \begin{cases} (ki, kj, [p)), & \text{if } p \in \{0, 1\};\\ (k(i+1) - 1, k(j+1) - 1, [2)), & \text{if } p = 2, \end{cases}$$

for all $i, j \in \omega$. It is obvious that $\alpha_{[k]}$ is an injective transformation of the monoid $B_{\omega}^{\mathscr{F}^3}$.

Lemma 2. For an arbitrary positive integer k the transformation $\alpha_{[k]} \colon \mathbf{B}_{\omega}^{\mathscr{F}^3} \to \mathbf{B}_{\omega}^{\mathscr{F}^3}$ is an injective monoid endomorphism of the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}^3}$.

Theorem 3. Let $\mathscr{F}^3 = \{[0), [1), [2)\}$ and ε be an injective monoid endomorphism of the semigroup $B_{\omega}^{\mathscr{F}^3}$. Then $\varepsilon = \alpha_{[k]}$ for some positive integer k.

By (\mathbb{N}, \cdot) we denote the multiplicative semigroup of positive integers.

Theorem 4. Let $\mathscr{F}^3 = \{[0), [1), [2)\}$. Then the monoid $\operatorname{End}^1_*(\mathcal{B}^{\mathscr{F}^3}_{\omega})$ of all injective endomorphisms of the semigroup $\mathcal{B}^{\mathscr{F}^3}_{\omega}$ is isomorphic to (\mathbb{N}, \cdot) .

References

- O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5–19 (in Ukrainian).
- [2] O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endomorphisms of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ with the twoelements family \mathscr{F} of inductive nonempty subsets of ω , Visnyk Lviv. Univ. Ser. Mech.-Mat. 94 (2022), 32–55.
- [3] O. Gutik and I. Pozdniakova, On the semigroup of non-injective monoid endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}}$ with the two-element family \mathscr{F} of inductive nonempty subsets of ω , Visnyk Lviv. Univ. Ser. Mech.-Mat. 95 (2023) (to appear).
- [4] O. Gutik and I. Pozdniakova, On the semigroup of endomorphisms of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω , Preprint.
- [5] M. Lawson, Inverse semigroups. The theory of partial symmetries, Singapore: World Scientific, 1998.