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The following definitions are from [1]. A path « in R™ is a continuous mapping v : A — R™ where
A is an interval in R. Its locus y(A) is denoted by |y|. Given a family T" of paths v in R™, a Borel
function p : R™ — [0, 00] is called admissible for T, abbr. p € admT, if [ p(x)|dz| > 1 for each (locally

2l

rectifiable) v € I'. The modulus of T" is defined by the relation

M(T):= inf /p"(x)dm(x) (1)
pcadm I’
Rn
interpreted as +oo if admI' = &. Everywhere below, unless otherwise stated, the boundary and the
closure of a set are understood in the sense of the extended Euclidean space R”.
Let @Q : R™ — [0,00] be Lebesgue measurable function. We will say that f satisfies the inverse

Poletsky’s inequality if the ratio

MI) < [ QW) s dmy @
f(D)
holds for any family of (locally rectifiable) paths I' in D and for any p, € adm f(I"). Note that estimates
of the type (B) are well known and holds for classes of mappings (see, e.g., [2, Theorem 6.7.1I] and [3,
theorem 8.5]). o
Given sets I/ and I and a given domain D in R" = R" U {co}, we denote by I'(E, F, D) the
family of all paths 7 : [0,1] — R” joining E and F in D, that is, v(0) € E, v(1) € F and ~(t) € D
for all ¢ € (0,1). In accordance with [4], a domain D in R™ is called quasieztremal distance domain
(QED-domain for short) if

M(I(E, F,R")) < Ao - M(I'(E, F, D)) (3)
for some finite number Ag > 1 and all continua £ and F in D. In the extended Euclidean space
R™ = R"U{oo} we use the spherical (chordal) metric h(z,y) = |r(x)—m(y)|, where 7 is a stereographic
projection of R” onto the sphere S™(3€,41,3) = {z € R""!: |z — €,11/2| = 1/2} in R™™!, and

1

\/1+\x|2

h(z,00) =
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|z — y|

)= \/1 + yx|2\/1 + ly?

(see e.g. [L, Definition 12.1]). In what follows, given A, B C R" we set h(A4,B) = qunf Bh(:ﬂ,y),
xre S

L st ty (4)

)

where h is a chordal metric in (@) Consider the following definition that has been proposed by
Nékki [5], cf. [6]. The boundary of a domain D is called locally quasiconformal if every point zg € 0D
has a neighborhood U, for which there exists a quasiconformal mapping ¢ of U onto the unit ball
B"™ C R" such that ¢(0D NU) is the intersection of the unit sphere B"™ with a coordinate hyperplane
xn = 0, where x = (z1,...,x,). Note that, with slight differences in the definition, domains with such
boundaries are also called collared domains.

Given 0 > 0, domains D, D’ C R™, n > 2, a nondegenerate continunum A C D’ and a Lebesgue-
measurable function @ : D’ — [0,00] denote by S5 4.0(D,D’) the family of all open discrete and
closed mappings f of the domain D onto the domain D’ satisfying the condition (E) and such that
h(f ~1(A),0D) > 4. The following statement is true.

Theorem 1. Let Q € LY(D’), let D be a QED-domain, and D' is a bounded domain with a locally
quasiconformal boundary. Then any mapping [ € S54.0(D,D’) which satisfies the relation (@) has a
continuous extension f : D — D', while, for each point xo € 0D there will be U neighborhoods of this
point and constants C = C(n, A, D, D’ x9) >0 and 0 < a = a(n, A, D, D’ xg) < 1 such that

Fla) - T < — 29l
log (1 + ﬁ)

for all x,y € UN D, where ||Q||1 is the norm of the function Q in L*(D’).

(5)

The result mentioned above is accepted for publication in [[].
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