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In this research we continue our previous investigation of wreath product normal structure [1, 2]
Normal subgroups and there structures for finite and infinite iterated wreath products Sn1 ≀ . . . ≀ Snm ,
n,m ∈ N and An ≀ Sn are founded.
Let k(π) be the number of cycles in decomposition of permutation π of degree n.
The number n− k(π) is denoted by dec(π), and is called a decrement [6] of permutation π. As well

known [6] the minimal number of transpositions in factorization of a permutation π on transpositions
is happen to be equal to dec(π). We set dec(e) = 0. If π1, π2 ∈ Sn, then the following formula holds:

dec(π1 · π2) = dec(π1) + dec(π2)− 2m,m ∈ N, (1)

Definition 1. The permutational subwreath product G ≀≀H is the semi-direct product G ⋉ H̃X ,
where G acts on the subdirect product [4] H̃X by the respective permutations of the subdirect factors.
Provided the specification of H̃X is established separately.
Definition 2. The set of elements from Sn ≀ Sn, n ⩾ 3 which presented by the tableaux of form:
[e]0, [a1, a2, . . . , an]1, satisfying the following condition

n∑
i=1

dec([ai]1) = 2k, k ∈ N, (2)

be called set of type Ã(1)
n . Note that condition (2) uniquely identifies subdirect product.

The set Ã(1)
n is a normal subgroup having normal rank 2 in Sn ≀Sn and be denoted by E ≀≀Ãn. We

spread this definition on 3-multiple wreath product by recursive way.

Definition 3. The subgroup E ≀ Ã(1)
n be denoted by Ã

(2)
n .

Furthermore we prove that E ≀ Ã(2)
n ◁Sn ≀Sn ≀Sn. The order of E ≀ Ã(2)

n is (n!)3n : 23. The subgroup
Ã

(1)
n has normal rank 2 in Sn ≀ Sn.
Definition 4. The set of elements from Sn ≀ Sn ≀ Sn, n ⩾ 3 presented by the tables [3] form:
[e]1, [e, e, . . . , e]2, [a1, a2, . . . , an]2, satisfying the following condition

n∑
i=1

dec([ai]2) = 2k, k ∈ N, (3)

be denoted by Ã
(2)
n2 . Note that condition (3) uniquely identifies subdirect product in

n2∏
i=1

Sn as base
of subwreath product, the similar subdirect product describing commutator of wreath product was
investigated by us in [8] in researсh of pronormality it appears in [9].

Proposition 5. The subgroup Ã
(1)
n ◁ Sn ≀ Sn as well as Ã(2)

n ◁ Sn ≀ Sn ≀ Sn. Furthermore Ã
(2)
n ◁ Ã

(2)
n2 .

Definition 6. A subgroup in Sn ≀ Sn is called T̃n if it consists of:
(1) elements of E ≀An ,
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(2) elements with the tableau [3] presentation [e]1, [π1, . . . , πn]2, that πi ∈ Sn \An.
One easy can validates a correctness of this definition, i.e. that the set of such elements form a
subgroup and its normality. This subgroup has structure

T̃n ≃ (An ×An × · · · × An︸ ︷︷ ︸
n

)⋊ C2 ≃ Sn ⊞ Sn . . .⊞ Sn︸ ︷︷ ︸
n

,

where the operation ⊞ of a subdirect product is subject of item 1) and 2)

Remark 7. The order of T̃n is (n!)n

2n−1 .
Definition 8. The unique minimal normal subgroup is called the monolith.
Theorem 9. The monolith of Sn ≀ Sm is e ≀Am.
Theorem 10. Proper normal subgroups in Sn ≀Sm, where n,m ≥ 3 with n,m ̸= 4 are of the following
types:

(1) subgroups that act only on the second level are

E ≀≀Ãm, T̃m, E ≀ Sm, E ≀Am,

(2) subgroups that act on both levels are An ≀≀Ãm, Sn ≀≀Ãm, An ≀ Sm,

wherein the subgroup Sn ≀≀Ãm ≃ Sn ⋌ (Sm ⊠ Sm ⊠ Sm . . .⊠ Sm︸ ︷︷ ︸
n

) endowed with the subdirect product

satisfying to condition (2).
Theorem 11. The full list of normal subgroups of W = Sn ≀ Sn ≀ Sn consists of 50 normal subgroups.
These subgroups are the following:
1 Type T023 contains: E ≀≀Ãn ≀≀H, T̃n ≀H, where H ∈ {Ãn, Ãn2 , Sn}. There are 6 subgroups.
2 The second type of subgroups is subclass in T023 with new base of wreath product subgroup
Ãn2: E ≀ Sn ≀≀Ãn2, E ≀Ni(Sn ≀ Sn). Therefore this class has 12 new subgroups. Thus, the total
number of normal subgroups in Type T023 is 18.

3 Type T003: A(3)
00(n2)

, T̃n2, T̃n
(3).

4 Type T123: Ni(Sn ≀ Sn) ≀ Sn, Ni(Sn ≀ Sn) ≀ Ãn and Ni(Sn ≀ Sn) ≀≀Ãn2. Thus, there are 29 new normal
subgroups in T123, taking into account a repetition.

Remark 12. Note that E ≀ Ã(1)
n ≃ E ≀ (E ≀≀Ãn) contains in the family E ≀Ni(Sn ≀ Sn).

We denote by AutfX∗ the group of all finite automorphism of spherically homogeneous rooted tree.
Theorem 13. Let H ◁ AutfX

∗ having depth k, then H contains k-th level subgroup P having all
even vertex permutations pki ∈ An on Xk and trivial permutations in vertices of rest of levels.
Furthermore P is normal in AutfX

∗ provided k is last active level of AutfX∗.
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