UNIFORM APPROXIMATION BY FOURIER SUMS IN WEYL-NAGY CLASSES $W_{\beta,1}^r$

Anatolii Serdyuk

(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine)

E-mail: serdyuk@imath.kiev.ua

Ihor Sokolenko

(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* sokol@imath.kiev.ua

We investigate asymptotic behavior of the least upper bounds of approximations in the uniform metric by Fourier sums $S_{n-1}(f; \cdot)$ of classes $W_{\beta,1}^r$ of 2π -periodic Weyl–Nagy differentiable functions f.

Let L_p , $1 \le p \le \infty$, and C be the spaces of 2π -periodic functions with standard norms $\|\cdot\|_{L_p}$ and $\|\cdot\|_C$, respectively.

Further, let $W_{\beta,p}^r$, r > 0, $\beta \in \mathbb{R}$, $1 \le p \le \infty$, be classes of 2π -periodic functions f that can be represented in the form of convolution

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(x-t) B_{r,\beta}(t) dt, \quad a_0 \in \mathbb{R},$$
(1)

with Weyl–Nagy kernels of the form $B_{r,\beta}(t) = \sum_{k=1}^{\infty} k^{-r} \cos\left(kt - \frac{\beta\pi}{2}\right)$, of function φ satisfying the condition $\varphi \in B_p^0 = \{\varphi \in L_p : \|\varphi\|_p \le 1, \int_{-\pi}^{\pi} \varphi(t) dt = 0\}.$

The classes $W_{\beta,p}^r$ are called the Weyl–Nagy classes and the function φ in representation (1) is called the (r, β) -derivative of the function f in the Weyl–Nagy sense and denoted by f_{β}^r .

Theorem 1. Let r > 2, $\beta \in \mathbb{R}$, and $n \in \mathbb{N}$. The following estimate is true

$$\mathcal{E}_{n}(W_{\beta,1}^{r})_{C} = \sup_{f \in W_{\beta,1}^{r}} \|f(\cdot) - S_{n-1}(f; \cdot)\|_{C} = \frac{1}{n^{r}} \left(\frac{1}{\pi(1 - e^{-r/n})} + \mathcal{O}(1)\delta_{r,n}\right),\tag{2}$$

where $\mathcal{O}(1)$ is a quantity uniformly bounded in all analyzed parameters,

$$\delta_{r,n} = \begin{cases} 1 + \frac{n}{r(r-2)}, & 2 < r \le n+1, \\ \frac{r}{n^2} e^{-r/n}, & n+1 \le r \le n^2, \\ e^{-r/n} & r \ge n^2. \end{cases}$$

Remark 2. Estimate (2) was published for $r \ge \sqrt{n} + 1$ in [1, 2] (2019, 2022).

This work was partially supported by the Grant H2020-MSCA-RISE-2019, project number 873071 (SOMPATY: Spectral Optimization: From Mathematics to Physics and Advanced Technology), by the VolkswagenStiftung project "From Modeling and Analysis to Approximation" and by the grant from the Simons Foundation (1290607, AS) and (1290607, IS)".

References

- A. S. Serdyuk and I. V. Sokolenko. Approximation by Fourier sums in classes of differentiable functions with high exponents of smoothness. *Meth. Funct. Anal. Topol.*, 25, No. 4, 381–387, 2019.
- [2] A. S. Serdyuk and I. V. Sokolenko. Approximation by Fourier sums in the classes of Weyl–Nagy differentiable functions with high exponents of smoothness. Ukr. Math. J., 74, No 5, 783–800, 2022.