ON THE iNVERSE POLETSKY iNEQUALiTY WiTH A COTANGENT DiLATATiON

Sevost'yanov Evgeny

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics,

Slov'yans'k)

E-mail: esevostyanov2009@gmail.com

Valery Targonskii (Zhytomyr Ivan Franko State University) *E-mail:* w.targonsk@gmail.com

Thefollowing definitions are from [[1](#page-1-0)]. A path γ in \mathbb{R}^n is a continuous mapping $\gamma : \Delta \to \mathbb{R}^n$ where Δ is an interval in R. Its locus $\gamma(\Delta)$ is denoted by $|\gamma|$. Given a family Γ of paths γ in \mathbb{R}^n , a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , abbr. $\rho \in \text{adm } \Gamma$, if

$$
\int\limits_{\gamma}\rho(x)|dx|\geqslant 1
$$

for each (locally rectifiable) $\gamma \in \Gamma$. Given $p \geq 1$, the *p*-modulus of Γ is defined by the relation

$$
M_p(\Gamma) := \inf_{\rho \in \text{adm}\,\Gamma} \int_{\mathbb{R}^n} \rho^p(x) dm(x) \tag{1}
$$

interpreted as $+\infty$ if adm $\Gamma = \emptyset$ *.*

We will need the following definitions related to paths, their lengths and mappings defined on them, see [\[2,](#page-1-1) section 8]. If $\gamma : \Delta \to \mathbb{R}^n$ is a locally rectifiable path, then there is the unique nondecreasing length function l_{γ} of Δ onto a length interval $\Delta_{\gamma} \subset \mathbb{R}$ with a prescribed normalization $l_{\gamma}(t_0) = 0 \in \Delta_{\gamma}$, $t_0 \in \Delta$, such that $l_{\gamma}(t)$ is equal to the length of the subpath $\gamma|_{[t_0,t]}$ of γ if $t > t_0$, $t \in \Delta$, and $l_{\gamma}(t)$ is equal to minus length of $\gamma|_{[t,t_0]}$ if $t < t_0$, $t \in \Delta$. Let $g : |\gamma| \to \mathbb{R}^n$ be a continuous mapping, and suppose that the path $\tilde{\gamma} = g \circ \gamma$ is also locally rectifiable. Then there is a unique non-decreasing function $L_{\gamma,g}: \Delta_{\gamma} \to \Delta_{\widetilde{\gamma}}$ such that $L_{\gamma,g}(l_{\gamma}(t)) = l_{\widetilde{\gamma}}(t)$ for all $t \in \Delta$. A path γ in D is called here a (whole) *lifting* of a path $\tilde{\gamma}$ in \mathbb{R}^n under $f: D \to \mathbb{R}^n$ if $\tilde{\gamma} = f \circ \gamma$.

Further, we use the notation *I* for the segment [*a, b*]. Given a closed rectifiable path $\gamma : I \to \mathbb{R}^n$, we define a length function $l_\gamma(t)$ by the rule $l_\gamma(t) = S(\gamma, [a, t])$, where $S(\gamma, [a, t])$ is the length of the path $\gamma|_{[a,t]}$. Let $\alpha : [a,b] \to \mathbb{R}^n$ be a rectifiable path in \mathbb{R}^n , $n \geq 2$, and $l(\alpha)$ be its length. A *normal representation* α^0 of α is defined as a path $\alpha^0 : [0, l(\alpha)] \to \mathbb{R}^n$ which can be got from α by change of parameter such that $\alpha(t) = \alpha^0 \left(S(\alpha, [a, t]) \right)$ for every $t \in [0, l(\alpha)]$. Such a normal representation always exists and is unique (see [**?**, Theorem 2.4]).

The following definition may be found in [\[1,](#page-1-0) 2.5, item 2, section I]. Let $\alpha : [a, b] \to \mathbb{R}^n$ be a closed rectifiable path in \mathbb{R}^n , $n \geq 2$. A mapping $f : |\alpha| \to \mathbb{R}^n$ is said to be *absolutely continuous on* α , if the function $f \circ \alpha^0$ is absolutely continuous on $[0, l(\alpha)]$, where $l(\alpha)$ denotes the length of α , and α^0 is its normal representation.

In the following, we say that some property *P* holds for *p-almost all paths in the domain D* if this property may be violated only for some family Γ_0 of paths in *D* such that $M_p(\Gamma_0) = 0$, where $M_p(\Gamma_0)$ denotes the *p*-module of the family of paths Γ_0 defined in [\(1](#page-0-0)). We will say that the mapping $f: D \to \mathbb{R}^n$ has the *ACP-property with respect to p-modulus,* write $f \in ACP_p$, if the length function $L_{\gamma, f}$ is absolutely continuous on all closed intervals Δ_{γ} for *p*-almost all paths γ in *D*.

Let *X* and *Y* be two spaces with measures μ and μ' , respectively. We say that a mapping $f: X \to Y$ has *N*-property of Luzin, if from the condition $\mu(E) = 0$ it follows that $\mu'(f(E)) = 0$. Similarly, we say that a mapping $f: X \to Y$ has N^{-1} -Luzin property, if from the condition $\mu'(E) = 0$ it follows that $\mu(f^{-1}(E)) = 0$.

Let $x \in D$ be a differentiability point of f . We set

$$
l(f'(x)) = \min_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}, \quad ||f'(x)|| = \max_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}, \quad J(x, f) = \det f'(x).
$$

Given sets *E* and *F* and a given domain *D* in $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$, we denote by $\Gamma(E, F, D)$ the family of all paths $\gamma : [0,1] \to \overline{\mathbb{R}^n}$ joining *E* and *F* in *D*, that is, $\gamma(0) \in E$, $\gamma(1) \in F$ and $\gamma(t) \in D$ for all $t \in (0,1)$. Everywhere below, unless otherwise stated, the boundary and the closure of a set are understood in the sense of the extended Euclidean space $\overline{\mathbb{R}^n}$. Let $x_0 \in \overline{D}$, $x_0 \neq \infty$,

$$
B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}, \quad \mathbb{B}^n = B(0, 1),
$$
\n
$$
S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}, S_i = S(x_0, r_i), \quad i = 1, 2,
$$
\n
$$
A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.
$$

Let $f: D \to \mathbb{R}^n$, $n \geqslant 2$, and let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function such that $Q(y) \equiv 0$ for $y \in \mathbb{R}^n \setminus f(D)$. Let $A = A(y_0, r_1, r_2)$ and $\Gamma_f(y_0, r_1, r_2)$ denotes the family of all paths $\gamma : [a, b] \to D$ such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$, i.e., $f(\gamma(a)) \in S(y_0, r_1)$, $f(\gamma(b)) \in S(y_0, r_2)$, and $f(\gamma(t)) \in A(y_0, r_1, r_2)$ for any $a < t < b$. We say that *f satisfies the inverse Poletsky inequality at* $y_0 \in f(D)$ *with respect to p-modulus,* if the relation

$$
M_p(\Gamma_f(y_0, r_1, r_2)) \leqslant \int\limits_A Q(y) \cdot \eta^p(|y - y_0|) dm(y) \tag{2}
$$

holds for any $0 < r_1 < r_2 < r_0 := \sup$ *y∈f*(*D*) *|y* − *y*₀*|* and any Lebesgue measurable function $η$: (r_1, r_2) →

 $[0,\infty]$ such that \int^{r_2} *r*1 $\eta(r) dr \geq 1$. A mapping $f: D \to \mathbb{R}^n$ is called *weakly light*, if, for any $y \in \mathbb{R}^n$, each connected component $\{f^{-1}(y)\}$ does not contain a non-degenerate path (see, e.g., Remark 8.3 in [\[2\]](#page-1-1)).

Theorem 1. Let $p > 1$, and let $f : D \to \mathbb{R}^n$ be a weakly light mapping which is differentiable *a.e.* and has Luzin N - and N^{-1} -properties with respect to the Lebesgue measure in \mathbb{R}^n , besides that, $f \in ACP_p(D)$ *. Let* $y_0 \in \overline{f(D)} \setminus \{\infty\}$ *. Set*

$$
K_{CT,p,y_0}(y,f) = \sum_{x \in f^{-1}(y)} \frac{\left(\sup_{|h|=1} \left| \left(f'(x)h, \frac{f(x)-y_0}{|f(x)-y_0|} \right) \right| \right)^p}{|J(x,f)|}.
$$
\n(3)

Then f satisfies the inverse Poletsky inequality [2](#page-1-2) *at* y_0 *for* $Q_*(y) := K_{CT,p,y_0}(y, f)$ *.*

The result mentioned above is published in [\[3\]](#page-1-3).

REFERENCES

- [1] Väisälä J. *Lectures on n-Dimensional Quasiconformal Mappings.* Lecture Notes in Math. 229. Berlin etc., Springer– Verlag, 1971.
- [2] Martio O., Ryazanov V., Srebro U. and Yakubov E. *Moduli in Modern Mapping Theory*. Springer Science + Business Media, LLC : New York, 2009.
- [3] Sevost'yanov E., Targonskii V. On the Inverse Poletsky Inequality with a Cotangent Dilatation. *Comput. Methods Funct. Theory.* 2023. https://doi.org/10.1007/s40315-023-00495-3