On the inverse Poletsky inequality with a cotangent dilatation

Sevost'yanov Evgeny

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'yans'k)

E-mail: esevostyanov2009@gmail.com

Valery Targonskii

(Zhytomyr Ivan Franko State University)
E-mail: w.targonsk@gmail.com

The following definitions are from [1]. A path γ in \mathbb{R}^n is a continuous mapping $\gamma : \Delta \to \mathbb{R}^n$ where Δ is an interval in \mathbb{R} . Its locus $\gamma(\Delta)$ is denoted by $|\gamma|$. Given a family Γ of paths γ in \mathbb{R}^n , a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , abbr. $\rho \in \operatorname{adm} \Gamma$, if

$$\int_{\gamma} \rho(x)|dx| \geqslant 1$$

for each (locally rectifiable) $\gamma \in \Gamma$. Given $p \ge 1$, the p-modulus of Γ is defined by the relation

$$M_p(\Gamma) := \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^p(x) dm(x)$$
 (1)

interpreted as $+\infty$ if $\operatorname{adm} \Gamma = \emptyset$.

We will need the following definitions related to paths, their lengths and mappings defined on them, see [2, section 8]. If $\gamma:\Delta\to\mathbb{R}^n$ is a locally rectifiable path, then there is the unique nondecreasing length function l_{γ} of Δ onto a length interval $\Delta_{\gamma}\subset\mathbb{R}$ with a prescribed normalization $l_{\gamma}(t_0)=0\in\Delta_{\gamma}$, $t_0\in\Delta$, such that $l_{\gamma}(t)$ is equal to the length of the subpath $\gamma|_{[t_0,t]}$ of γ if $t>t_0$, $t\in\Delta$, and $l_{\gamma}(t)$ is equal to minus length of $\gamma|_{[t,t_0]}$ if $t< t_0$, $t\in\Delta$. Let $g:|\gamma|\to\mathbb{R}^n$ be a continuous mapping, and suppose that the path $\widetilde{\gamma}=g\circ\gamma$ is also locally rectifiable. Then there is a unique non-decreasing function $L_{\gamma,g}:\Delta_{\gamma}\to\Delta_{\widetilde{\gamma}}$ such that $L_{\gamma,g}(l_{\gamma}(t))=l_{\widetilde{\gamma}}(t)$ for all $t\in\Delta$. A path γ in D is called here a (whole) lifting of a path $\widetilde{\gamma}$ in \mathbb{R}^n under $f:D\to\mathbb{R}^n$ if $\widetilde{\gamma}=f\circ\gamma$.

Further, we use the notation I for the segment [a,b]. Given a closed rectifiable path $\gamma:I\to\mathbb{R}^n$, we define a length function $l_{\gamma}(t)$ by the rule $l_{\gamma}(t)=S\left(\gamma,[a,t]\right)$, where $S(\gamma,[a,t])$ is the length of the path $\gamma|_{[a,t]}$. Let $\alpha:[a,b]\to\mathbb{R}^n$ be a rectifiable path in \mathbb{R}^n , $n\geqslant 2$, and $l(\alpha)$ be its length. A normal representation α^0 of α is defined as a path $\alpha^0:[0,l(\alpha)]\to\mathbb{R}^n$ which can be got from α by change of parameter such that $\alpha(t)=\alpha^0\left(S\left(\alpha,[a,t]\right)\right)$ for every $t\in[0,l(\alpha)]$. Such a normal representation always exists and is unique (see [?, Theorem 2.4]).

The following definition may be found in [1, 2.5, item 2, section I]. Let $\alpha : [a, b] \to \mathbb{R}^n$ be a closed rectifiable path in \mathbb{R}^n , $n \ge 2$. A mapping $f : |\alpha| \to \mathbb{R}^n$ is said to be absolutely continuous on α , if the function $f \circ \alpha^0$ is absolutely continuous on $[0, l(\alpha)]$, where $l(\alpha)$ denotes the length of α , and α^0 is its normal representation.

In the following, we say that some property P holds for p-almost all paths in the domain D if this property may be violated only for some family Γ_0 of paths in D such that $M_p(\Gamma_0) = 0$, where $M_p(\Gamma_0)$ denotes the p-module of the family of paths Γ_0 defined in (1). We will say that the mapping $f: D \to \mathbb{R}^n$ has the ACP-property with respect to p-modulus, write $f \in ACP_p$, if the length function $L_{\gamma,f}$ is absolutely continuous on all closed intervals Δ_{γ} for p-almost all paths γ in D.

Let X and Y be two spaces with measures μ and μ' , respectively. We say that a mapping $f: X \to Y$ has N-property of Luzin, if from the condition $\mu(E) = 0$ it follows that $\mu'(f(E)) = 0$. Similarly, we

say that a mapping $f: X \to Y$ has N^{-1} -Luzin property, if from the condition $\mu'(E) = 0$ it follows that $\mu(f^{-1}(E)) = 0$.

Let $x \in D$ be a differentiability point of f. We set

$$l(f'(x)) = \min_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}, \quad ||f'(x)|| = \max_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}, \quad J(x,f) = \det f'(x).$$

Given sets E and F and a given domain D in $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$, we denote by $\Gamma(E, F, D)$ the family of all paths $\gamma : [0,1] \to \overline{\mathbb{R}^n}$ joining E and F in D, that is, $\gamma(0) \in E$, $\gamma(1) \in F$ and $\gamma(t) \in D$ for all $t \in (0,1)$. Everywhere below, unless otherwise stated, the boundary and the closure of a set are understood in the sense of the extended Euclidean space $\overline{\mathbb{R}^n}$. Let $x_0 \in \overline{D}$, $x_0 \neq \infty$,

$$B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}, \quad \mathbb{B}^n = B(0, 1),$$

$$S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}, S_i = S(x_0, r_i), \quad i = 1, 2,$$

$$A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.$$

Let $f: D \to \mathbb{R}^n$, $n \ge 2$, and let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function such that $Q(y) \equiv 0$ for $y \in \mathbb{R}^n \setminus f(D)$. Let $A = A(y_0, r_1, r_2)$ and $\Gamma_f(y_0, r_1, r_2)$ denotes the family of all paths $\gamma: [a, b] \to D$ such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$, i.e., $f(\gamma(a)) \in S(y_0, r_1)$, $f(\gamma(b)) \in S(y_0, r_2)$, and $f(\gamma(t)) \in A(y_0, r_1, r_2)$ for any a < t < b. We say that f satisfies the inverse Poletsky inequality at $y_0 \in f(D)$ with respect to p-modulus, if the relation

$$M_p(\Gamma_f(y_0, r_1, r_2)) \leqslant \int_A Q(y) \cdot \eta^p(|y - y_0|) \, dm(y)$$
 (2)

holds for any $0 < r_1 < r_2 < r_0 := \sup_{y \in f(D)} |y - y_0|$ and any Lebesgue measurable function $\eta: (r_1, r_2) \to r_0$

 $[0,\infty]$ such that $\int_{r_1}^{r_2} \eta(r) dr \geqslant 1$. A mapping $f: D \to \mathbb{R}^n$ is called weakly light, if, for any $y \in \mathbb{R}^n$, each connected component $\{f^{-1}(y)\}$ does not contain a non-degenerate path (see, e.g., Remark 8.3 in [2]).

Theorem 1. Let p > 1, and let $f : D \to \mathbb{R}^n$ be a weakly light mapping which is differentiable a.e. and has Luzin N- and N⁻¹-properties with respect to the Lebesgue measure in \mathbb{R}^n , besides that, $f \in ACP_p(D)$. Let $y_0 \in \overline{f(D)} \setminus \{\infty\}$. Set

$$K_{CT,p,y_0}(y,f) = \sum_{x \in f^{-1}(y)} \frac{\left(\sup_{|h|=1} \left| \left(f'(x)h, \frac{f(x)-y_0}{|f(x)-y_0|}\right) \right| \right)^p}{|J(x,f)|}.$$
 (3)

Then f satisfies the inverse Poletsky inequality 2 at y_0 for $Q_*(y) := K_{CT,p,y_0}(y,f)$.

The result mentioned above is published in [3].

References

- [1] Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer–Verlag, 1971.
- [2] Martio O., Ryazanov V., Srebro U. and Yakubov E. *Moduli in Modern Mapping Theory*. Springer Science + Business Media, LLC: New York, 2009.
- [3] Sevost'yanov E., Targonskii V. On the Inverse Poletsky Inequality with a Cotangent Dilatation. *Comput. Methods Funct. Theory.* 2023. https://doi.org/10.1007/s40315-023-00495-3