HASSE NORM THEOREM FOR 3-MANIFOLDS

Hirotaka Tashiro (744, Motooka, Fukuoka, 819-0395, JAPAN) *E-mail:* tashiro.hirotaka.035@s.kyushu-u.ac.jp

Abstract:Following the analogies between knots and primes, 3-manifolds and number rings in arithmetic topology, we show a topological analogue of the Hasse norm principle for finite cyclic coverings of 3-manifolds, which was originally stated for finite cyclic extensions of number fields.

Theorem 1. Let M be an integral homology 3-sphere endowed with a very admissible link \mathcal{L} . Let $f: N \to M$ be a finite cyclic covering branched over a finite sublink L_0 of \mathcal{L} . Then,

$$P_{M,\mathcal{L}} \cap f_*(I_{N,f^{-1}(\mathcal{L})})) = f_*(P_{N,f^{-1}(\mathcal{L})}).$$

Lemma 2. Let M be an oriented connected closed 3-manifold endowed with a very admissible link \mathcal{L} . Let $f : N \to M$ be a finite covering branched over a finite link $L_0 \subset \mathcal{L}$. Let $f_* : I_{N,f^{-1}(\mathcal{L})} \to I_{M,\mathcal{L}}$ denote the homomorphism induced by f. Then, we have

$$f_*(\prod_{J\subset f^{-1}(\mathcal{L})}\mathbb{Z}[\mu_J])\subset \prod_{K\subset\mathcal{L}}\mathbb{Z}[\mu_K].$$

Proposition 3. Let M be an integer homology 3-shpere endowed with a very admissible link \mathcal{L} and $[A] \in H_2(M, \mathcal{L})$. Then there is a finite sublink $L \subset \mathcal{L}$ such that $[A] \in H_2(M, L)$. We can write $[A] = \sum_{K \subset L} c_K[S_K]$ with $c_K \in \mathbb{Z}$. Let $\Delta_{M,\mathcal{L}}([A]) = (a_K)_{K \subset \mathcal{L}} \in I_{M,\mathcal{L}}$. Then we have the following formula:

$$a_{K} = \begin{cases} c_{K}[\lambda_{K}] - (\sum_{K' \subset L \setminus K} \operatorname{lk}(K, K')c_{K'})[\mu_{K}] & (K \subset L) \\ -\sum_{K' \subset L} \operatorname{lk}(K, K')c_{K'}[\mu_{K}] & (K \subset \mathcal{L} \setminus L) \end{cases}$$

References

- [Mi] Tomoki Mihara. Cohomological approach to class field theory in arithmetic topology. Canad. J. Math., 71(4):891-935, 2019.
- [Mo] M. Morishita. Knots and Primes An Introduction to Arithmetic Topology. Universitext, 2nd edition, Universitext, Springer, 2024.
- [Ne] J. Neukirch, Algebraic Number Theory (Grundlehren Der Mathematiscen Wissenschaften, 322), Springer, Berlin, 1999.
- [NU] H. Niibo and J. Ueki. Idèlic class field theory for 3-manifolds and very admissible links. Transactions of the AMS, 371, No.12, (2019), 8467-8488.
- [Ta] Hirotaka Tashiro, On Hasse norm principle for 3-manifolds in arithmetic topology, arXiv:2404.06464, 2024.