BALAYAGE ON LOCALLY COMPACT SPACES

Natalia Zorii

(Institute of Mathematics of NASU, Tereshchenkivska 3, 02000, Kyiv, Ukraine) *E-mail:* zorii@imath.kiev.ua

This talk is based on[[1](#page-1-0)]–[[3](#page-1-1)], and it is devoted to the theory of potentials on a locally compact (Hausdorff) space X with respect to a *kernel* κ , κ being thought of as a symmetric, lower semicontinuous function $\kappa : X \times X \to [0, \infty]$. To be exact, we are interested in generalizations of the classical theory of balayage (sweeping out) on \mathbb{R}^n , $n \geq 2$ (see e.g. [\[4\]](#page-1-2)–[\[7\]](#page-1-3)), to a suitable kernel κ on *X*.

We denote by \mathfrak{M} the linear space of all (real-valued Radon) measures μ on X, equipped with the *vague* topology of pointwise convergence on the continuous functions $\varphi : X \to \mathbb{R}$ of compact support, and by \mathfrak{M}^+ the cone of all positive $\mu \in \mathfrak{M}$. (For the theory of measures and integration on X, we referto Bourbaki [[8](#page-1-4)].) Given $\mu, \nu \in \mathfrak{M}$, the *mutual energy* and the *potential* are introduced by

$$
I(\mu, \nu) := \int \kappa(x, y) d(\mu \otimes \nu)(x, y) \text{ and } U^{\mu}(x) := \int \kappa(x, y) d\mu(y), \quad x \in X,
$$

respectively, provided the value on the right is well defined as a finite number or $\pm\infty$. For $\mu = \nu$, the mutual energy $I(\mu, \nu)$ defines the *energy* $I(\mu, \mu) =: I(\mu)$ of $\mu \in \mathfrak{M}$.

In what follows, a kernel κ is assumed to satisfy the *energy principle*, which means that $I(\mu) \geq 0$ for all (signed) $\mu \in \mathfrak{M}$, and moreover that $I(\mu) = 0$ only for $\mu = 0$. Then all $\mu \in \mathfrak{M}$ of finite energy form a pre-Hilbert space $\mathcal E$ with the inner product $\langle \mu, \nu \rangle := I(\mu, \nu)$ and the energy norm $\|\mu\| := \sqrt{I(\mu)}$, cf. [\[9,](#page-1-5) Lemma 3.1.2]. The topology on *E* introduced by means of this norm is said to be *strong*.

In addition, we shall always assume that *κ* satisfies the *consistency* principle, which means that the cone $\mathcal{E}^+ := \mathcal{E} \cap \mathfrak{M}^+$ is *complete* in the induced strong topology, and that the strong topology on \mathcal{E}^+ is *finer* than the vague topology on \mathcal{E}^+ ; such a kernel is said to be *perfect* (Fuglede [\[9\]](#page-1-5)). Thus any strong Cauchy net $(\mu_j) \subset \mathcal{E}^+$ converges *both strongly and vaguely* to the same unique measure $\mu_0 \in \mathcal{E}^+$.

Yet another permanent requirement on κ is that it satisfies the *domination principle*, which means that for any $\mu \in \mathcal{E}^+$ and any $\nu \in \mathfrak{M}^+$ with $U^{\mu} \leq U^{\nu}$ μ -a.e., the same inequality holds on all of X.

For any $A \subset X$, we denote by \mathfrak{C}_A the upward directed set of all compact subsets K of A, where *K*₁ ≤ *K*₂ if and only if *K*₁ ⊂ *K*₂. If a net $(x_K)_{K \in \mathfrak{C}_A}$ ⊂ *Y* converges to $x_0 \in Y$, *Y* being a topological space, then we shall indicate this fact by writing: $x_K \to x_0$ in *Y* as $K \uparrow A$.

Given $A \subset X$, we denote by \mathfrak{M}^+_A the class of all $\mu \in \mathfrak{M}^+$ *concentrated on* A , which means that $X \setminus A$ is locally μ -negligible, or equivalently that *A* is μ -measurable and $\mu = \mu | A, \mu | A$ being the trace of μ to *A*. Also write \mathcal{E}_A^+ $A^+_A := \mathfrak{M}_A^+ \cap \mathcal{E}$, and let \mathcal{E}'_A stand for the closure of \mathcal{E}_A^+ \mathcal{L}_A^+ in the strong topology on $\mathcal{E}.$ Being a strongly closed subcone of the strongly complete cone \mathcal{E}^+ , \mathcal{E}'_A is likewise strongly complete.

Denotingby $c_*(E)$ and $c^*(E)$ the *inner* and *outer* capacity of $E \subset X$, respectively [[9](#page-1-5), Section 2.3], we say that an assertion $\mathcal{A}(x)$ involving a variable point $x \in X$, holds *nearly everywhere* $(n.e.),$ resp. *quasi-everywhere* $(q.e.),$ on a set *A* if $c_*(E) = 0$, resp. $c^*(E) = 0$, where $E := \{x \in A : \mathcal{A}(x) \text{ fails}\}.$

Theorem 1. For any $A \subset X$ and any $\sigma \in \mathcal{E}^+$, there exists $\sigma^A \in \mathcal{E}'_A$, called the inner balayage of σ to *A, that is uniquely characterized by any one of the following (equivalent) assertions.*

(i) σ^A *is the unique measure in* \mathcal{E}'_A *having the property*

$$
U^{\sigma^A} = U^{\sigma} \quad n.e. \text{ on } A.
$$

(ii) σ^A *is the unique orthogonal projection of* σ *in the pre-Hilbert space* $\mathcal E$ *onto the (convex, strongly complete) cone* \mathcal{E}'_A *, that is,* $\sigma^A \in \mathcal{E}'_A$ *and*

$$
\|\sigma - \sigma^A\| = \min_{\mu \in \mathcal{E}'_A} \|\sigma - \mu\|.
$$

(iii) σ^A *is the unique measure in* \mathcal{E}^+ *satisfying any one of the following three limit relations:*

$$
\sigma^K \to \sigma^A \quad strongly \in \mathcal{E}^+ \text{ as } K \uparrow A,
$$

\n
$$
\sigma^K \to \sigma^A \quad vaguely \in \mathcal{E}^+ \text{ as } K \uparrow A,
$$

\n
$$
U^{\sigma^K} \uparrow U^{\sigma^A} \quad pointwise \text{ on } X \text{ as } K \uparrow A,
$$

where σ^K *denotes the only measure in* \mathcal{E}_K^+ *with the property* $U^{\sigma^K} = U^{\sigma}$ *n.e. on K.* (iv) σ^A *is the only measure in the class* $\Gamma_{A,\sigma}$ *having the property*

$$
U^{\sigma^A} = \min_{\mu \in \Gamma_{A,\sigma}} U^{\mu} \quad on \text{ all of } X,\tag{1}
$$

where $\Gamma_{A,\sigma} := \{ \mu \in \mathcal{E}^+ : U^{\mu} \geq U^{\sigma} \text{ n.e. on } A \}.$

(v) σ^A *is the only measure in the class* $\Gamma_{A,\sigma}$ *, introduced above, with the property*

$$
\|\sigma^A\| = \min_{\mu \in \Gamma_{A,\sigma}} \|\mu\|.
$$

Theorem 2. *If a space X is second-countable, while a set A is Borel, then Theorem* [1](#page-0-0) *remains valid with "n.e. on A" replaced throughout by "q.e. on A". The measure ω [∗]A, thereby uniquely determined, is said to be the outer balayage of* ω *onto A. Actually,* $\omega^{*A} = \omega^A$. (Compare with [\[10](#page-1-6), Theorem 4.12].)

Remark 3. All the above-mentioned assumptions on a space *X* and a kernel κ are fulfilled by:

- \checkmark The *α*-Riesz kernels $|x-y|^{\alpha-n}$ of order $\alpha \in (0,2], \alpha < n$, on ℝⁿ, $n \ge 2$ (see [[6](#page-1-7), Theorems 1.15, 1.18, 1.27, 1.29]).
- \checkmark The associated *α*-Green kernels, where $\alpha \in (0, 2]$ and $\alpha < n$, on an arbitrary open subset of \mathbb{R}^n , $n \geq 2$ (see [[11,](#page-1-8) Theorems 4.6, 4.9, 4.11]).
- \checkmark The (2-)Green kernel on a planar Greenian set (see [\[5\]](#page-1-9)and [[7](#page-1-3), Sections I.V.10, I.XIII.7]).

(We emphasize that some of the results formulated above are new even for these classical kernels.)

Remark 4. The theory of balayage thereby developed has already been shown to be a powerful tool in the well-known Gauss variational problem, see [\[12\]](#page-1-10).

Problem 5. What kind of additional assumptions on *X* and κ would make it possible to generalize the theory of balayage, presented above, to Radon measures on *X* of *infinite* energy?

REFERENCES

- [1] Natalia Zorii. Balayage of measures on a locally compact space. *Analysis Mathematica*, 48(1) : 249–277, 2022.
- [2] Natalia Zorii. On the theory of capacities on locally compact spaces and its interaction with the theory of balayage. *Potential Analysis,* 59(3) : 1345–1379, 2023.
- [3] Natalia Zorii. On the theory of balayage on locally compact spaces. *Potential Analysis,* 59(4) : 1727–1744, 2023.
- [4] Henri Cartan. Théorie générale du balayage en potentiel newtonien. *Annales de l'université de Grenoble,* 22 : 221–280, 1946.
- [5] Ralph E. Edwards. Cartan's balayage theory for hyperbolic Riemann surfaces. *Annales de l'institut Fourier*, 8 : 263–272, 1958.
- [6] Naum S. Landkof. *Foundations of Modern Potential Theory*. Berlin : Springer, 1972.
- [7] Joseph L. Doob. *Classical Potential Theory and Its Probabilistic Counterpart*. Berlin : Springer, 1984.
- [8] Nicolas Bourbaki. *Integration. Chapters* 1–6. Berlin : Springer, 2004.
- [9] Bent Fuglede. On the theory of potentials in locally compact spaces. *Acta Mathematica*, 103 (3–4) : 139–215, 1960.
- [10] Bent Fuglede. Symmetric function kernels and sweeping of measures. *Analysis Mathematica*, 42(3) : 225–259, 2016.
- [11] Bent Fuglede, Natalia Zorii. Green kernels associated with Riesz kernels. *Annales Fennici Mathematici*, 43(1) : 121–145, 2018.
- [12] Natalia Zorii. Minimum energy problems with external fields on locally compact spaces. *Constructive Approximation*, $59(2): 385 - 417, 2024.$