BALAYAGE ON LOCALLY COMPACT SPACES

Natalia Zorii

(Institute of Mathematics of NASU, Tereshchenkivska 3, 02000, Kyiv, Ukraine) *E-mail:* zorii@imath.kiev.ua

This talk is based on [1]–[3], and it is devoted to the theory of potentials on a locally compact (Hausdorff) space X with respect to a kernel κ , κ being thought of as a symmetric, lower semicontinuous function $\kappa : X \times X \to [0, \infty]$. To be exact, we are interested in generalizations of the classical theory of balayage (sweeping out) on \mathbb{R}^n , $n \ge 2$ (see e.g. [4]–[7]), to a suitable kernel κ on X.

We denote by \mathfrak{M} the linear space of all (real-valued Radon) measures μ on X, equipped with the *vague* topology of pointwise convergence on the continuous functions $\varphi : X \to \mathbb{R}$ of compact support, and by \mathfrak{M}^+ the cone of all positive $\mu \in \mathfrak{M}$. (For the theory of measures and integration on X, we refer to Bourbaki [8].) Given $\mu, \nu \in \mathfrak{M}$, the *mutual energy* and the *potential* are introduced by

$$I(\mu,\nu) := \int \kappa(x,y) \, d(\mu \otimes \nu)(x,y) \quad \text{and} \quad U^{\mu}(x) := \int \kappa(x,y) \, d\mu(y), \quad x \in X,$$

respectively, provided the value on the right is well defined as a finite number or $\pm \infty$. For $\mu = \nu$, the mutual energy $I(\mu, \nu)$ defines the energy $I(\mu, \mu) =: I(\mu)$ of $\mu \in \mathfrak{M}$.

In what follows, a kernel κ is assumed to satisfy the *energy principle*, which means that $I(\mu) \ge 0$ for all (signed) $\mu \in \mathfrak{M}$, and moreover that $I(\mu) = 0$ only for $\mu = 0$. Then all $\mu \in \mathfrak{M}$ of finite energy form a pre-Hilbert space \mathcal{E} with the inner product $\langle \mu, \nu \rangle := I(\mu, \nu)$ and the energy norm $\|\mu\| := \sqrt{I(\mu)}$, cf. [9, Lemma 3.1.2]. The topology on \mathcal{E} introduced by means of this norm is said to be *strong*.

In addition, we shall always assume that κ satisfies the *consistency* principle, which means that the cone $\mathcal{E}^+ := \mathcal{E} \cap \mathfrak{M}^+$ is *complete* in the induced strong topology, and that the strong topology on \mathcal{E}^+ is *finer* than the vague topology on \mathcal{E}^+ ; such a kernel is said to be *perfect* (Fuglede [9]). Thus any strong Cauchy net $(\mu_j) \subset \mathcal{E}^+$ converges both strongly and vaguely to the same unique measure $\mu_0 \in \mathcal{E}^+$.

Yet another permanent requirement on κ is that it satisfies the *domination principle*, which means that for any $\mu \in \mathcal{E}^+$ and any $\nu \in \mathfrak{M}^+$ with $U^{\mu} \leq U^{\nu}$ μ -a.e., the same inequality holds on all of X.

For any $A \subset X$, we denote by \mathfrak{C}_A the upward directed set of all compact subsets K of A, where $K_1 \leq K_2$ if and only if $K_1 \subset K_2$. If a net $(x_K)_{K \in \mathfrak{C}_A} \subset Y$ converges to $x_0 \in Y$, Y being a topological space, then we shall indicate this fact by writing: $x_K \to x_0$ in Y as $K \uparrow A$.

Given $A \subset X$, we denote by \mathfrak{M}_A^+ the class of all $\mu \in \mathfrak{M}^+$ concentrated on A, which means that $X \setminus A$ is locally μ -negligible, or equivalently that A is μ -measurable and $\mu = \mu|_A$, $\mu|_A$ being the trace of μ to A. Also write $\mathcal{E}_A^+ := \mathfrak{M}_A^+ \cap \mathcal{E}$, and let \mathcal{E}_A' stand for the closure of \mathcal{E}_A^+ in the strong topology on \mathcal{E} . Being a strongly closed subcone of the strongly complete cone \mathcal{E}^+ , \mathcal{E}_A' is likewise strongly complete.

Denoting by $c_*(E)$ and $c^*(E)$ the *inner* and *outer* capacity of $E \subset X$, respectively [9, Section 2.3], we say that an assertion $\mathcal{A}(x)$ involving a variable point $x \in X$, holds *nearly everywhere* (*n.e.*), resp. *quasi-everywhere* (*q.e.*), on a set A if $c_*(E) = 0$, resp. $c^*(E) = 0$, where $E := \{x \in A : \mathcal{A}(x) \text{ fails}\}$.

Theorem 1. For any $A \subset X$ and any $\sigma \in \mathcal{E}^+$, there exists $\sigma^A \in \mathcal{E}'_A$, called the inner balayage of σ to A, that is uniquely characterized by any one of the following (equivalent) assertions.

(i) σ^A is the unique measure in \mathcal{E}'_A having the property

$$U^{\sigma^A} = U^{\sigma}$$
 n.e. on A.

(ii) σ^A is the unique orthogonal projection of σ in the pre-Hilbert space \mathcal{E} onto the (convex, strongly complete) cone \mathcal{E}'_A , that is, $\sigma^A \in \mathcal{E}'_A$ and

$$\|\sigma - \sigma^A\| = \min_{\mu \in \mathcal{E}'_A} \|\sigma - \mu\|.$$

(iii) σ^A is the unique measure in \mathcal{E}^+ satisfying any one of the following three limit relations:

$$\sigma^{K} \to \sigma^{A} \quad strongly \ in \ \mathcal{E}^{+} \ as \ K \uparrow A,$$

$$\sigma^{K} \to \sigma^{A} \quad vaguely \ in \ \mathcal{E}^{+} \ as \ K \uparrow A,$$

$$U^{\sigma^{K}} \uparrow U^{\sigma^{A}} \quad pointwise \ on \ X \ as \ K \uparrow A$$

where σ^{K} denotes the only measure in \mathcal{E}_{K}^{+} with the property $U^{\sigma^{K}} = U^{\sigma}$ n.e. on K. (iv) σ^{A} is the only measure in the class $\Gamma_{A,\sigma}$ having the property

$$U^{\sigma^{A}} = \min_{\mu \in \Gamma_{A,\sigma}} U^{\mu} \quad on \ all \ of \ X, \tag{1}$$

where $\Gamma_{A,\sigma} := \{ \mu \in \mathcal{E}^+ : U^{\mu} \ge U^{\sigma} \quad n.e. \text{ on } A \}.$

(v) σ^A is the only measure in the class $\Gamma_{A,\sigma}$, introduced above, with the property

$$\|\sigma^A\| = \min_{\mu \in \Gamma_{A,\sigma}} \|\mu\|.$$

Theorem 2. If a space X is second-countable, while a set A is Borel, then Theorem 1 remains valid with "n.e. on A" replaced throughout by "q.e. on A". The measure ω^{*A} , thereby uniquely determined, is said to be the outer balayage of ω onto A. Actually, $\omega^{*A} = \omega^{A}$. (Compare with [10, Theorem 4.12].)

Remark 3. All the above-mentioned assumptions on a space X and a kernel κ are fulfilled by:

- ✓ The α -Riesz kernels $|x y|^{\alpha n}$ of order $\alpha \in (0, 2]$, $\alpha < n$, on \mathbb{R}^n , $n \ge 2$ (see [6, Theorems 1.15, 1.18, 1.27, 1.29]).
- ✓ The associated α -Green kernels, where $\alpha \in (0, 2]$ and $\alpha < n$, on an arbitrary open subset of \mathbb{R}^n , $n \ge 2$ (see [11, Theorems 4.6, 4.9, 4.11]).
- ✓ The (2-)Green kernel on a planar Greenian set (see [5] and [7, Sections I.V.10, I.XIII.7]).

(We emphasize that some of the results formulated above are new even for these classical kernels.)

Remark 4. The theory of balayage thereby developed has already been shown to be a powerful tool in the well-known Gauss variational problem, see [12].

Problem 5. What kind of additional assumptions on X and κ would make it possible to generalize the theory of balayage, presented above, to Radon measures on X of *infinite* energy?

References

- [1] Natalia Zorii. Balayage of measures on a locally compact space. Analysis Mathematica, 48(1): 249–277, 2022.
- [2] Natalia Zorii. On the theory of capacities on locally compact spaces and its interaction with the theory of balayage. Potential Analysis, 59(3): 1345–1379, 2023.
- [3] Natalia Zorii. On the theory of balayage on locally compact spaces. Potential Analysis, 59(4): 1727–1744, 2023.
- [4] Henri Cartan. Théorie générale du balayage en potentiel newtonien. Annales de l'université de Grenoble, 22 : 221–280, 1946.
- [5] Ralph E. Edwards. Cartan's balayage theory for hyperbolic Riemann surfaces. Annales de l'institut Fourier, 8: 263–272, 1958.
- [6] Naum S. Landkof. Foundations of Modern Potential Theory. Berlin : Springer, 1972.
- [7] Joseph L. Doob. Classical Potential Theory and Its Probabilistic Counterpart. Berlin : Springer, 1984.
- [8] Nicolas Bourbaki. Integration. Chapters 1–6. Berlin : Springer, 2004.
- [9] Bent Fuglede. On the theory of potentials in locally compact spaces. Acta Mathematica, 103 (3–4) : 139–215, 1960.
- [10] Bent Fuglede. Symmetric function kernels and sweeping of measures. Analysis Mathematica, 42(3): 225–259, 2016.
- Bent Fuglede, Natalia Zorii. Green kernels associated with Riesz kernels. Annales Fennici Mathematici, 43(1): 121–145, 2018.
- [12] Natalia Zorii. Minimum energy problems with external fields on locally compact spaces. Constructive Approximation, 59(2): 385–417, 2024.