[Stability of vertical minimal surfaces in three-dimensional sub-Riemannian manifolds](#page-14-0)

Stability of vertical minimal surfaces in three-dimensional sub-Riemannian manifolds

Ihor Havrylenko, Eugene Petrov

V.N. Karazin Kharkiv National University

27 May, 2024

KORKA BRADE KORA

A sub-Riemannian manifold is a smooth manifold M together with a completely non-integrable smooth distribution $\mathcal H$ on M (it is called a horizontal distribution) and a smooth field of Euclidean scalar products $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ on \mathcal{H} (it is called a sub-Riemannian metric). In particular, $\langle \cdot, \cdot \rangle$ can be constructed as the restriction of some Riemannian metric $\langle \cdot, \cdot \rangle$ on M to H. Here we will assume that all sub-Riemannian structures are of this form.

KORKA BRADE KORA

Let Σ be a smooth oriented surface in a three-dimensional sub-Riemannian manifold M. If N_h is the orthogonal projection of the unit normal field N of Σ (in the Riemannian sense) onto H and $d\Sigma$ is the Riemannian area form of Σ , then the sub-Riemannian area of a domain $D \subset \Sigma$ is defined as

$$
A(D)=\int\limits_{D} |N_h| d\Sigma.
$$

The *normal variation* of the surface Σ defined by a smooth function u is the map

$$
\varphi : \Sigma \times I \to M : \varphi_s(p) = exp_p(su(p)N(p)),
$$

where *I* is an open neighborhood of 0 in $\mathbb R$ and \exp_{p} is the Riemannian exponential map at p . In other words, we construct the variation in the traditional Riemannian way by drawing the geodesic through each point $p \in \Sigma$ in the direction of the normal vector $u(p)N(p)$. **KORKAR KERKER EL VOLO** [Stability of vertical minimal surfaces in three-dimensional sub-Riemannian manifolds](#page-0-0)

Denote

$$
A(s)=\int\limits_{\Sigma_s}|N_h|\,d\Sigma_s,
$$

where $\Sigma_{\mathfrak{s}} = \varphi_{\mathfrak{s}}(\Sigma)$. Then $A'(0)$ is called the first *(normal) area* variation defined by φ , and $A''(0)$ is called the second one. A surface Σ is called *minimal* if $A'(0) = 0$ for any normal variations with compact support in $\Sigma \setminus \Sigma_0$, where $\Sigma_0 = \{p \in \Sigma \mid N_h(p) = 0\}$ is the *singular set* of Σ . Note that here we also follow the Riemannian tradition by defining minimal surfaces as stationary points of the sub-Riemannian area functional. A minimal surface Σ is called *stable* if $A''(0) \geqslant 0$ for any normal

KORKAR KERKER EL VOLO

variations with compact support in $\Sigma \setminus \Sigma_0$.

We will call a surface Σ in a three-dimensional sub-Riemannian manifold vertical if $T_p\Sigma \perp \mathcal{H}_p$ for each $p \in \Sigma$, that is, $N \in \mathcal{H}$. In particular, for such surfaces $N_h = N$ and $\Sigma_0 = \emptyset$.

Proposition

Let Σ be a vertical surface in a three-dimensional sub-Riemannian manifold M. Then its first normal area variation defined by a smooth function u with compact support equals

$$
A'(0)=-\int\limits_{\Sigma}2Hu\,d\Sigma,
$$

where H is the Riemannian mean curvature of Σ .

Corollary

A vertical surface is minimal in the sub-Riemannian sense if and only if in is minimal in the Riemannian sence.

Proposition

Let Σ be a vertical minimal surface in a three-dimensional sub-Riemannian manifold M. Then its second normal area variation defined by a smooth function u with compact support equals

$$
A''(0) = \int_{\Sigma} -(X(u) - \langle \nabla_N X, N \rangle u)^2 +
$$

$$
+ \underbrace{|\nabla_{\Sigma} u|^2 - (\text{Ric}(N, N) + |B|^2) u^2}_{\text{The Riemannian part}} d\Sigma,
$$

where ∇ and Ric are the Riemannian connection and the Ricci tensor of M respectively, X is the unit normal vector field of H (which is tangent to Σ because it is vertical), ∇_{Σ} and $|B|$ are the Riemannian gradient and the norm of the second fundamental form of $Σ$ respectively.

Corollary

If a vertical minimal surface is stable in the sub-Riemannian sense, it is also stable in the Riemannian sense.

Let us look at some examples.

In [\[3\]](#page-14-1) A. Hurtado and C. Rosales considered the standard three-dimensional sphere $(S^3,\langle\cdot,\cdot\rangle)$ embedded in the Euclidean space \mathbb{R}^4 with coordinates (x,y,z,w) with the horizontal distribution orthogonal to the Hopf field

$$
X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - w\frac{\partial}{\partial z} + z\frac{\partial}{\partial w}
$$

(completely non-integrable and left-invariant with respect to the Lie group structure of $S^3)$ and showed that complete connected vertical minimal surfaces are Clifford tori. It is well-known that they are not stable in the Riemannian sense, hence also in the sub-Riemannian sense.KID KA KERKER E VOOR

The three-dimensional Heisenberg group \mathbb{H}^1 (also known as the three-dimensional Thurston geometry *Nil*) is the space \mathbb{R}^3 with coordinates (x, y, z) and with the following orthonormal basis of left-invariant vector fields defined by its nilpotent Lie group structure:

$$
X_1=\frac{\partial}{\partial x}-y\frac{\partial}{\partial z}, X_2=\frac{\partial}{\partial y}+x\frac{\partial}{\partial z}, X_3=\frac{\partial}{\partial z}.
$$

Let the horizontal distribution H be orthogonal to X_3 . It is completely non-integrable because $[X_1, X_2] = X_3$.

In [\[2\]](#page-14-2) it was shown by A. Hurtado, M. Ritoré and C. Rosales that a complete connected minimal surface with the empty singular set (in particular, vertical) in \mathbb{H}^1 is stable if and only if it is a vertical (that is, parallel to $X_3=\frac{\partial}{\partial x}$ $\frac{\partial}{\partial z}$) Euclidean plane.

Note that there are no other vertical minimal surfaces in \mathbb{H}^1 .

The manifold $E(2)$ is the universal covering of the proper motions group of the Euclidean plane. This is the space \mathbb{R}^3 with coordinates (x, y, z) and with the following orthonormal basis of left-invariant vector fields defined by its solvable Lie group structure:

$$
X_1 = \cos z \frac{\partial}{\partial x} + \sin z \frac{\partial}{\partial y}, X_2 = -\sin z \frac{\partial}{\partial x} + \cos z \frac{\partial}{\partial y}, X_3 = \frac{\partial}{\partial z}.
$$

Note that its Riemannian metric is Euclidean and that $[X_3, X_1] = X_2$, so the horizontal distribution H orthogonal to X_2 is completely non-integrable.

In [\[1\]](#page-14-3) we proved that all complete connected vertical minimal surfaces in $E(2)$ are Euclidean planes $z = C$ and standard helicoids. We showed that planes are stable in the sub-Riemannian sense, and it is known that helicoids are not stable in the Riemannian sense, hence also in the sub-Riemannian sense.

The three-dimensional Thurston geometry Sol is the space \mathbb{R}^3 with coordinates (x, y, z) and with the following orthonormal basis of left-invariant vector fields defined by its solvable Lie group structure:

$$
X_1 = \frac{1}{\sqrt{2}} \left(e^{-z} \frac{\partial}{\partial x} + e^z \frac{\partial}{\partial y} \right), X_2 = \frac{1}{\sqrt{2}} \left(e^{-z} \frac{\partial}{\partial x} - e^z \frac{\partial}{\partial y} \right),
$$

$$
X_3 = \frac{\partial}{\partial z}.
$$

Note that $[X_2, X_3] = X_1$, so the left-invariant distribution H orthogonal to X_1 is completely non-integrable. Let us consider a sub-Riemannian structure on Sol such that H is horizontal.

KORKAR KERKER EL VOLO

It follows from the results of L. Masaltsev in [\[4\]](#page-14-4) that any complete connected vertical minimal surface in Sol is either a Euclidean plane $z = C$ or a "helicoid"

$$
(s,t)\mapsto \left(\frac{1}{\sqrt{2}}e^{-t}s+C_1,\frac{1}{\sqrt{2}}e^{t}s+C_2,t\right).
$$

KORKA BRADE KORA

Using this description, we are able to prove the following.

Proposition

All vertical minimal surfaces in Sol are stable in the sub-Riemannian sense and thus in the Riemannian sense. The three-dimensional Thurston geometry $SL(2, \mathbb{R})$ can be described as the universal covering of the unit tangent bundle of the hyperbolic plane H^2 with the Sasaki metric, that is, the half-space $\{(x, y, z) \in \mathbb{R}^3 \mid y > 0\}$ with the following orthonormal basis of left-invariant vector fields with respect to its simple Lie group structure:

$$
X_1 = y \left(-\sin z \frac{\partial}{\partial x} + \cos z \frac{\partial}{\partial y} \right) + \sin z \frac{\partial}{\partial z},
$$

$$
X_2 = y \left(-\cos z \frac{\partial}{\partial x} - \sin z \frac{\partial}{\partial y} \right) + \cos z \frac{\partial}{\partial z}, X_3 = \frac{\partial}{\partial z}.
$$

In particular, $[X_1, X_2] = -X_3$, so the left-invariant distribution H orthogonal to X_3 is completely non-integrable. Consider a sub-Riemannian structure on this manifold such that H is horizontal.

We than obtain the following description.

Theorem

Any complete connected vertical minimal surface in $SL(2, \mathbb{R})$ has either the parameterization $(s, t) \mapsto (C, s, t)$ or $(\mathsf{s},t) \mapsto \left(\mathsf{C}_{1} + \frac{1}{\mathsf{C}_{1}} \right)$ $\frac{1}{C_2}$ sin C_2 s, $-\frac{1}{C_2}$ $\left(\frac{1}{C_2}\cos C_2 s,t\right)$ and so is a cylinder over a geodesic in H^2 .

KORKAR KERKER SAGA

All vertical minimal surfaces in $SL(2, \mathbb{R})$ are stable in the sub-Riemannian sense and thus in the Riemannian sense.

[Stability of vertical minimal surfaces in three-dimensional sub-Riemannian manifolds](#page-0-0)

Thank you! Дякую за увагу!

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 수 있어요

- I. Гавриленко, Є. Петров. Стiйкiсть мiнiмальних поверхонь у F субрімановому многовиді $E(2)$. Вісник ХНУ ім. В.Н. Каразiна, сер. мат., прикл. мат., мех., 98 : 50–67, 2023.
- 歸 A. Hurtado, M. Ritoré, C. Rosales. The classification of complete stable area-stationary surfaces in the Heisenberg group \mathbb{H}^1 . Adv. in Math., 224(2): 561–600, 2010.
- F. A. Hurtado, C. Rosales. Area-stationary surfaces inside the sub-Riemannian three-sphere. Math. Ann., 340(3) : 675–708, 2008.
- L. Masaltsev. Minimal surfaces in standard three-dimensional E. geometry Sol³. J. Math. Phys., Anal., Geom., 2(1): 104–110, 2006.

KORKAR KERKER EL VOLO