Stability of vertical minimal surfaces in three-dimensional sub-Riemannian manifolds

Ihor Havrylenko, Eugene Petrov

V.N. Karazin Kharkiv National University

27 May, 2024

A sub-Riemannian manifold is a smooth manifold M together with a completely non-integrable smooth distribution $\mathcal H$ on M (it is called a horizontal distribution) and a smooth field of Euclidean scalar products $\langle\cdot,\cdot\rangle_{\mathcal H}$ on $\mathcal H$ (it is called a sub-Riemannian metric). In particular, $\langle\cdot,\cdot\rangle_{\mathcal H}$ can be constructed as the restriction of some Riemannian metric $\langle\cdot,\cdot\rangle$ on M to $\mathcal H$. Here we will assume that all sub-Riemannian structures are of this form.

Let Σ be a smooth oriented surface in a three-dimensional sub-Riemannian manifold M. If N_h is the orthogonal projection of the unit normal field N of Σ (in the Riemannian sense) onto $\mathcal H$ and $d\Sigma$ is the Riemannian area form of Σ , then the *sub-Riemannian* area of a domain $D \subset \Sigma$ is defined as

$$A(D) = \int_{D} |N_h| \, d\Sigma.$$

The *normal variation* of the surface Σ defined by a smooth function u is the map

$$\varphi: \Sigma \times I \to M: \varphi_s(p) = \exp_p(su(p)N(p)),$$

where I is an open neighborhood of 0 in \mathbb{R} and exp_p is the Riemannian exponential map at p. In other words, we construct the variation in the traditional Riemannian way by drawing the geodesic through each point $p \in \Sigma$ in the direction of the normal vector u(p)N(p).

Denote

$$A(s) = \int_{\Sigma_s} |N_h| \, d\Sigma_s,$$

where $\Sigma_s = \varphi_s(\Sigma)$. Then A'(0) is called the first (normal) area variation defined by φ , and A''(0) is called the second one. A surface Σ is called minimal if A'(0) = 0 for any normal variations with compact support in $\Sigma \setminus \Sigma_0$, where $\Sigma_0 = \{p \in \Sigma \mid N_h(p) = 0\}$ is the singular set of Σ . Note that here we also follow the Riemannian tradition by defining minimal surfaces as stationary points of the sub-Riemannian area functional. A minimal surface Σ is called stable if $A''(0) \geqslant 0$ for any normal variations with compact support in $\Sigma \setminus \Sigma_0$.

We will call a surface Σ in a three-dimensional sub-Riemannian manifold *vertical* if $T_p\Sigma \perp \mathcal{H}_p$ for each $p \in \Sigma$, that is, $N \in \mathcal{H}$. In particular, for such surfaces $N_h = N$ and $\Sigma_0 = \emptyset$.

Proposition

Let Σ be a vertical surface in a three-dimensional sub-Riemannian manifold M. Then its first normal area variation defined by a smooth function u with compact support equals

$$A'(0) = -\int\limits_{\Sigma} 2Hu\ d\Sigma,$$

where H is the Riemannian mean curvature of Σ .

Corollary

A vertical surface is minimal in the sub-Riemannian sense if and only if in is minimal in the Riemannian sence.

Proposition

Let Σ be a vertical minimal surface in a three-dimensional sub-Riemannian manifold M. Then its second normal area variation defined by a smooth function u with compact support equals

$$A''(0) = \int_{\Sigma} -(X(u) - \langle \nabla_N X, N \rangle u)^2 + \frac{|\nabla_{\Sigma} u|^2 - (\operatorname{Ric}(N, N) + |B|^2) u^2}{\operatorname{The Riemannian part}} d\Sigma,$$

where ∇ and Ric are the Riemannian connection and the Ricci tensor of M respectively, X is the unit normal vector field of $\mathcal H$ (which is tangent to Σ because it is vertical), ∇_{Σ} and |B| are the Riemannian gradient and the norm of the second fundamental form of Σ respectively.

Corollary

If a vertical minimal surface is stable in the sub-Riemannian sense. it is also stable in the Riemannian sense.

Let us look at some examples.

In [3] A. Hurtado and C. Rosales considered the standard three-dimensional sphere $(S^3, \langle \cdot, \cdot \rangle)$ embedded in the Euclidean space \mathbb{R}^4 with coordinates (x, y, z, w) with the horizontal distribution orthogonal to the Hopf field

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - w\frac{\partial}{\partial z} + z\frac{\partial}{\partial w}$$

(completely non-integrable and left-invariant with respect to the Lie group structure of S^3) and showed that complete connected vertical minimal surfaces are Clifford tori. It is well-known that they are not stable in the Riemannian sense, hence also in the sub-Riemannian sense.

The three-dimensional Heisenberg group \mathbb{H}^1 (also known as the three-dimensional Thurston geometry Nil) is the space \mathbb{R}^3 with coordinates (x,y,z) and with the following orthonormal basis of left-invariant vector fields defined by its nilpotent Lie group structure:

$$X_1 = \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}, X_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, X_3 = \frac{\partial}{\partial z}.$$

Let the horizontal distribution \mathcal{H} be orthogonal to X_3 . It is completely non-integrable because $[X_1,X_2]=X_3$.

In [2] it was shown by A. Hurtado, M. Ritoré and C. Rosales that a complete connected minimal surface with the empty singular set (in particular, vertical) in \mathbb{H}^1 is stable if and only if it is a vertical (that is, parallel to $X_3 = \frac{\partial}{\partial z}$) Euclidean plane.

Note that there are no other vertical minimal surfaces in \mathbb{H}^1 .

The manifold E(2) is the universal covering of the proper motions group of the Euclidean plane. This is the space \mathbb{R}^3 with coordinates (x,y,z) and with the following orthonormal basis of left-invariant vector fields defined by its solvable Lie group structure:

$$X_1 = \cos z \frac{\partial}{\partial x} + \sin z \frac{\partial}{\partial y}, X_2 = -\sin z \frac{\partial}{\partial x} + \cos z \frac{\partial}{\partial y}, X_3 = \frac{\partial}{\partial z}.$$

Note that its Riemannian metric is Euclidean and that $[X_3,X_1]=X_2$, so the horizontal distribution $\mathcal H$ orthogonal to X_2 is completely non-integrable.

In [1] we proved that all complete connected vertical minimal surfaces in $\widetilde{E(2)}$ are Euclidean planes z=C and standard helicoids. We showed that planes are stable in the sub-Riemannian sense, and it is known that helicoids are not stable in the Riemannian sense, hence also in the sub-Riemannian sense.

The three-dimensional Thurston geometry Sol is the space \mathbb{R}^3 with coordinates (x,y,z) and with the following orthonormal basis of left-invariant vector fields defined by its solvable Lie group structure:

$$\begin{split} X_1 &= \frac{1}{\sqrt{2}} \left(e^{-z} \frac{\partial}{\partial x} + e^z \frac{\partial}{\partial y} \right), X_2 = \frac{1}{\sqrt{2}} \left(e^{-z} \frac{\partial}{\partial x} - e^z \frac{\partial}{\partial y} \right), \\ X_3 &= \frac{\partial}{\partial z}. \end{split}$$

Note that $[X_2, X_3] = X_1$, so the left-invariant distribution \mathcal{H} orthogonal to X_1 is completely non-integrable. Let us consider a sub-Riemannian structure on *Sol* such that \mathcal{H} is horizontal.

It follows from the results of L. Masaltsev in [4] that any complete connected vertical minimal surface in Sol is either a Euclidean plane z=C or a "helicoid"

$$(s,t)\mapsto \left(\frac{1}{\sqrt{2}}e^{-t}s+C_1,\frac{1}{\sqrt{2}}e^ts+C_2,t\right).$$

Using this description, we are able to prove the following.

Proposition

All vertical minimal surfaces in Sol are stable in the sub-Riemannian sense and thus in the Riemannian sense.

The three-dimensional Thurston geometry $SL(2,\mathbb{R})$ can be described as the universal covering of the unit tangent bundle of the hyperbolic plane H^2 with the Sasaki metric, that is, the half-space $\{(x,y,z)\in\mathbb{R}^3\mid y>0\}$ with the following orthonormal basis of left-invariant vector fields with respect to its simple Lie group structure:

$$X_1 = y \left(-\sin z \frac{\partial}{\partial x} + \cos z \frac{\partial}{\partial y} \right) + \sin z \frac{\partial}{\partial z},$$

$$X_2 = y \left(-\cos z \frac{\partial}{\partial x} - \sin z \frac{\partial}{\partial y} \right) + \cos z \frac{\partial}{\partial z}, X_3 = \frac{\partial}{\partial z}.$$

In particular, $[X_1, X_2] = -X_3$, so the left-invariant distribution $\mathcal H$ orthogonal to X_3 is completely non-integrable. Consider a sub-Riemannian structure on this manifold such that $\mathcal H$ is horizontal.

We than obtain the following description.

Theorem

Any complete connected vertical minimal surface in $SL(2,\mathbb{R})$ has either the parameterization $(s,t)\mapsto (C,s,t)$ or $(s,t)\mapsto \left(C_1+\frac{1}{C_2}\sin C_2 s,-\frac{1}{C_2}\cos C_2 s,t\right)$ and so is a cylinder over a geodesic in H^2 .

All vertical minimal surfaces in $SL(2,\mathbb{R})$ are stable in the sub-Riemannian sense and thus in the Riemannian sense.

Thank you! Дякую за увагу!

- І. Гавриленко, Є. Петров. Стійкість мінімальних поверхонь у субрімановому многовиді $\widetilde{E(2)}$. Вісник ХНУ ім. В.Н. Каразіна, сер. мат., прикл. мат., мех., 98 : 50–67, 2023.
- A. Hurtado, M. Ritoré, C. Rosales. The classification of complete stable area-stationary surfaces in the Heisenberg group \mathbb{H}^1 . Adv. in Math., 224(2): 561–600, 2010.
- A. Hurtado, C. Rosales. Area-stationary surfaces inside the sub-Riemannian three-sphere. *Math. Ann.*, 340(3): 675–708, 2008.
- L. Masaltsev. Minimal surfaces in standard three-dimensional geometry *Sol*³. *J. Math. Phys., Anal., Geom.*, 2(1): 104–110, 2006.