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Definition
Let N ≥ 2, and T1, T2, . . . , TN be bounded linear operators acting on a
separable Banach space X .

1. The finite sequence T1, T2, . . . , TN is called disjoint hypercyclic or
simply d-hypercyclic if there exists an element x ∈ X such that the
set

{(x , x , . . . , x), (T1x , T2x , . . . , TNx), (T 2
1 x , T 2

2 x , . . . , T 2
Nx), . . .} (1)

is dense in X N . In this case, the element x is called a d-hypercyclic
vector. If the set of all d-hypercyclic vectors for T1, T2, . . . , TN is
dense in X , then we say that T1, T2, . . . , TN are densely
d-hypercyclic .

2. The finite sequence T1, T2, . . . , TN is called disjoint topologically
transitive or simply d-topologically transitive if for any non-empty
open subsets U, V1, . . . , VN of X , there exist a natural number
n ∈ N such that

U ∩ T −n
1 (V1) ∩ · · · ∩ T −n

N (VN) ̸= ∅. (2)



Definition
Let {nk}k be a strictly increasing sequence of positive integers. We say
that T1, . . . , TN ∈ B(X ) satisfy the d-hypercyclicity criterion with respect
to {nk}k whenever there exist some dense subsets X0, X1, . . . , XN , of X
and mappings Sl,k : Xl → X (1 ≤ l ≤ N, k ∈ N) such that

T nk
l → 0 pointwise on X0,

Sl,k → 0 pointwise on Xl and

(T nk
l Si,k − δi,l IdXl ) → 0 pointwise on Xl(1 ≤ i , l ≤ N) (3)

as k → ∞. Also, we say that T1, . . . , TN satisfy the d-hypercyclicity
criterion if there exists some sequence {nk}k for which (3) is satisfied. If
T1, . . . , TN satisfy the d-hypercyclicity criterion, then they are densely
disjoint hypercyclic, so d-hypercyclicity criterion is stronger than dense
disjoint hypercyclicity.



In this presentation, we assume that H is a separable Hilbert space with
an orthonormal basis {ej}j∈Z. For each m ∈ N, we set
Lm := Span{e−m, e−m+1, . . . , em−1, em}., and we let Pm be the
orthogonal projection onto Lm.
The set of all bounded linear operators from H to H is denoted by B(H).
Also, the set of all compact (finite rank, respectively) elements of B(H)
is denoted by B0(H) (B00(H), respectively).

Definition
Let U, W ∈ B(H). We define the operator TU,W : B(H) → B(H) by

TU,W (F ) := WFU (4)

for all F ∈ B(H).



Theorem
Let W1, . . . , WN be invertible bounded linear operators on H. Let
U ∈ B(H) be a unitary operator in B(H) such that for each k ∈ N there
exists an Nk ∈ N with

Un(Lk) ⊥ Lk for all n ≥ Nk . (5)

For each k ∈ N denote the operator TU,Wk on B0(H) by Tk . Also,
assume that {rk}N

k=1 ⊆ N such that 0 < r1 < r2 < . . . < rN . Then, the
following conditions are equivalent.



(i) The set of all d-hypercyclic vectors of T r1
1 , . . . , T rN

N is dense in
B0(H).

(ii) For each m ∈ N there exist sequences
{Dk}∞

k=1, {G (1)
k }∞

k=1, . . . , {G (N)
k }∞

k=1 of operators in B0(H), and a
strictly increasing sequence {nk}∞

k=1 ⊆ N such that for each
l ∈ {1, . . . , N},

lim
k→∞

∥∥Dk − Pm
∥∥ = lim

k→∞

∥∥G (l)
k − Pm

∥∥ = 0, (6)

lim
k→∞

∥∥W rk nk
l Dk

∥∥ = lim
k→∞

∥∥W −rk nk
l G (l)

k
∥∥ = 0, (7)

and, for each pair of distinct s, l ∈ {1, . . . , N},

lim
k−→∞

∥∥W rl nk
l W −rs nk

s G (s)
k

∥∥ = 0. (8)



Remark
One can prove a similar result for the operator F 7→ UFW , where W is
invertible and U is a unitary operator satisfying the condition (5). For
this, it would be enough to replace the relations (7) and (8) by the
conditions

lim
k→∞

∥∥DkW rk nk
l

∥∥ = lim
k→∞

∥∥G (l)
k W −rk nk

l
∥∥ = 0

and
lim

k−→∞

∥∥G (s)
k W −rs nk

s W rl nk
l

∥∥ = 0,

respectively. It follows by passing to the adjoints that if W1, . . . , WN
satisfy the conditions (6), (7) and (8), then W ∗

1 , . . . , W ∗
N satisfy these

new conditions.

Example
Assume that α is a translation on Z. Set Uα(ej) := eα(j) for all j ∈ Z.
Then, Uα is a unitary operator on H satisfying the property (5).



Theorem
The following statements are equivalent:

1) The operators T r1
Ũ,W1

, . . . , T rN
Ũ,WN

satisfy d−hypercyclicity criterion on
B0(H), where Ũ is a unitary operator on H satisfying the condition (5).

2) The operators T r1
U,W1

, . . . , T rN
U,WN

satisfy d−hypercyclicity criterion on
B0(H) for every unitary operator U.

3) The operators W r1
1 , . . . , W rN

N satisfy d−hypercyclicity criterion on H.

The similar statements hold if we consider B1(H) or B2(H) instead of
B0(H).



Example
Let r1 ∈ N and r2 = 2r1. Put W1 and W2 to be the operators on H
defined as

W1(ej) =

2ej+1 for j < 0,
1
2ej+1 for j ≥ 0;

W2(ej) =

3ej+1 for j < 0,
1
3ej+1 for j ≥ 0.

Then W1 and W2 are bounded operators and T r1
U,W1

and T r2
U,W2

satisfy
d−hypercyclicity criterion for every unitary operator U.



In general, consider ℓ2(Z) and let {zj} be the natural orthonormal basis
for ℓ2(Z). Let V be the unitary operator from ℓ2(Z) onto H given by
Vzj = ej for all j ∈ Z. By the previous arguments it follows that if
T̃1

r1
, . . . , T̃N

rN are disjoint hypercyclic weighted shifts on ℓ2(Z), then
T r1

1 , . . . , T rN
N satisfy d−hypercyclicity criterion on B0(H) where

T ri
i (F ) = V T̃i

ri V ∗FU ri for all i ∈ {1, . . . , N} and F ∈ B0(H) and U is an
arbitrary unitary operator on H. For more details about disjoint
hypercyclic weighted shifts, see [bms14], [bp07].



Example
Let H = L2(R), α(t) = t − 1 for all t ∈ R,
w1 = 2XR− + 1

2 XR+ and w2 = 3XR− + 1
3 XR+ .

Choose an r1 ∈ N and set r2 = 2r1.

Let W1, W2 ∈ B(H) be given by Wj(f ) = wj · (f ◦ α) for all f ∈ H and
j ∈ {1, 2}.

Then T r1
U,W1

and T r2
U,W2

satisfy d−hypercyclicity criterion for every
unitary operator U.



In general, if α is a translation on R and w1, . . . , wN are positive,
measurable, bounded weight functions satisfying that w−1

1 , . . . , w−1
N are

also bounded, then we can consider the corresponding sequence
W r1

1 , . . . , W rN
N of weighted translation operators on L2(R).

If for every l , s ∈ {1, . . . , N} and m ∈ N we have that

lim
n→∞

sup
t∈[−m,m]

|
rl n−1∏
j=0

(wl◦αj−rl n)(t) | = lim
n→∞

sup
t∈[−m,m]

|
rl n−1∏
j=0

(wl◦αj)−1(t) | = 0

and in addition

lim
n→∞

sup
t∈[−m,m]

|
∏rl n

j=1(wl ◦ αrs n−j)(t)|
|
∏rs n−1

j=0 (ws ◦ αj)(t)|
= 0,

then the operators W r1
1 , . . . , W rN

N satisfy the conditions (6), (7) and (8) .



For an operator T in B(H), we will denote the left an the right multiplier
by LT and RT , respectively.

Corollary
Let W1, . . . , WN be invertible bounded linear operators on H and
{rk}1≤k≤N ⊆ N such that 0 ≤ r1 ≤ · · · ≤ rN . Then LW r1

1
, . . . , LW rN

N
satisfy

d−hypercyclicity criterion on B0(H) if and only if W r1
1 , . . . , W rN

N satisfy
d−hypercyclicity criterion on H. The similar statements hold if we
replace B0(H) by B1(H) or B2(H).



Let (B(H), SOT ) denote the space B(H) equipped with the strong
operator topology.

Corollary
We have (ii) implies (i).
(i) T r1

U,W1
, . . . , T rN

U,WN
are disjoint topologically transitive in (B(H), SOT )

for every unitary operator U.
(ii) For each m ∈ N there exist sequences
{Dk}∞

k=1, {G (1)
k }∞

k=1, . . . , {G (N)
k }∞

k=1 of operators in B(H) and a strictly
increasing sequence {nk}∞

k=1 ⊆ N such that for each l ∈ {1, . . . N},

s − lim
n→∞

Dk = s − lim
n→∞

G (l)
k = Pm

and the conditions (7) and (8) hold.
In particular, if W1, . . . , WN satisfy the conditions (6), (7) and (8), then
T r1

U,W1
, . . . , T rN

U,WN
are disjoint topologically transitive in (B(H), SOT ) for

every unitary operator U.



Let A be a non-unital C∗-algebra such that A is a closed two-sided ideal
in a unital C∗-algebra A1. Let Φ be an isometric ∗-isomorphism of A1
such that Φ(A) = A. Assume that there exists a net {pα}α ⊆ A
consisting of self-adjoint elements with ∥ pα ∥≤ 1 for all α and such that
{p2

α}α is an approximate unit for A. Suppose in addition that for all α
there exists some Nα ∈ N such that Φn(pα) · pα = 0 for all n ≥ Nα.

Let b ∈ G(A1) and TΦ,b be the operator on A1 defined by
TΦ,b(a) = b · Φ(a) for all a ∈ A1. Then TΦ,b is a bounded linear operator
on A1 and since A is an ideal in A1, it follows that TΦ,b(A) ⊆ A
because Φ(A) = A.



Theorem
The following statements are equivalent.
(i) TΦ,b is hypercyclic on A.
(ii) For every pα there exists a strictly increasing sequence {nk}k ⊆ N
and sequences {qk}k , {dk}k in A such that

lim
k→∞

∥ qk − p2
α ∥=∥ dk − p2

α ∥= 0

and
lim

k→∞
∥ Φ−nk (b)Φ−nk +1(b) . . . Φ−1(b)qk ∥

= lim
k→∞

∥ Φnk −1(b−1)Φnk −2(b−1) . . . Φ(b−1)b−1dk ∥= 0



If a ∈ A1, in the sequel we shall denote by La the left multiplier by a.

Corollary
If there exist dense subsets Ω1 and Ω2 of A and a strictly increasing
sequence {nk}k ⊆ N such that

LΦ−nk (b)Φ−nk +1(b)...Φ−1(b)
k→∞−→ 0

pointwise on Ω1 and

LΦnk −1(b−1)Φnk −2(b−1)...Φ(b−1)b−1
k→∞−→ 0

pointwise on Ω2, then TΦ,b is hypercyclic on A.
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