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Introduction

T : X — Y is bounded linear map between Banach spaces X and Y and
Bx is unit ball in X.
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Introduction

T : X — Y is bounded linear map between Banach spaces X and Y and
Bx is unit ball in X.
Entropy numbers:

ex(T) :=inf{e > 0: T(Bx) can be covered by 2~ balls in Y with radius ¢}

s-Numbers and n-Widths:
an(T) :=infp,sup,cr(gy) Iy — Pa(y)lly (Approx. numbers)
where P, € L(X,Y) with rank < n.
dn(T) := infy, sup,c (g, infyey, |y — z|ly (Kolmogorov numbers)
where Y, C Y is n-dimensional subspace.
cn(T) = infL, sup,cr(g)ni, IYIly (Gelfand numbers)
where L, are closed subspaces of Y with codimension at most n.
by(T) :=supy, sup{A >0:Y,NABy C T(By)} (Bernstain numbers)
where Y, is a subset of Y with dimension n.
in(T) :=sup {||A|}|B]| '} (isomorphism numbers)
where the sup. is taken over all Banach spaces G with dim(G) > n and
maps A € L(Y, G) and B € L(G, X) such that ATB is identity on G.
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Introduction

We have much more s-Numbers and n-Widths like:
m,(T) - Mityagin numbers,  n,(T) - Weyl numbers
¥a(T) - Chang numbers,  h,(T) - Hilbert numbers, ...

For every s-number we have: sy = ||T|| > s > .. >0
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Introduction

We have much more s-Numbers and n-Widths like:
m,(T) - Mityagin numbers,  n,(T) - Weyl numbers
¥a(T) - Chang numbers,  h,(T) - Hilbert numbers, ...

For every s-number we have: s; = || T|| > s, > ... > 0 + other properties
Above mentioned s-numbers are related:

an(T) > max(cy(T),dn(T)) = min(c,(T),dn(T))

> max(by(T)mp(T)) = min(by(T), my(T)) > in(T) > ha(T)

There are many duality relations like: a,(T") < a,(T) < 5a,(T'),
n(T)=do(T"), mo(T) = ba(T'), ...
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For every s-number we have: s; = || T|| > s, > ... > 0 + other properties

Above mentioned s-numbers are related:
an(T) > max(cy(T),dn(T)) = min(c,(T),dn(T))
> max(by(T)mp(T)) = min(by(T), my(T)) > in(T) > ha(T)

There are many duality relations like: a,(T") < a,(T) < 5a,(T'),
n(T)=do(T"), mo(T) = ba(T'), ...

T - compact iff limp_ocen(T) = 0 iff lim,_ 00 da(T) = 0.
Measure of non-compactness: 5(T) = lime,(T),
plainly 0 < 8(T) < || T||
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Introduction

We have much more s-Numbers and n-Widths like:
m,(T) - Mityagin numbers,  n,(T) - Weyl numbers
¥a(T) - Chang numbers,  h,(T) - Hilbert numbers, ...

For every s-number we have: s; = || T|| > s, > ... > 0 + other properties

Above mentioned s-numbers are related:
an(T) > max(cy(T),dn(T)) = min(c,(T),dn(T))
> max(by(T)mp(T)) = min(by(T), my(T)) > in(T) > ha(T)

There are many duality relations like: a,(T") < a,(T) < 5a,(T'),
n(T)=do(T"), mo(T) = ba(T'), ...

T - compact iff limp_ocen(T) = 0 iff lim,_ 00 da(T) = 0.
Measure of non-compactness: 5(T) = lime,(T),

plainly 0 < 5(T) < || T||
We say that T is maximally noncompact if || T|| = 8(T).
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Strictly singular maps

Let X, Y be Banach spaces with norms |||, ||-||y respectively. The
map T : X — Y is said to be strictly singular if there is no infinite
dimensional closed subspace Z of X such that the restriction T|z of T to
Z is an isomorphism of Z onto T(Z).
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Strictly singular maps

Let X, Y be Banach spaces with norms |||, ||-||y respectively. The
map T : X — Y is said to be strictly singular if there is no infinite
dimensional closed subspace Z of X such that the restriction T|z of T to
Z is an isomorphism of Z onto T(Z).

Equivalently, for each infinite-dimensional closed subspace Z of X,

inf {|| Tx||y : |Ix]|x =1,x € Z} = 0.
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Strictly singular maps

Let X, Y be Banach spaces with norms |||, ||-||y respectively. The
map T : X — Y is said to be strictly singular if there is no infinite
dimensional closed subspace Z of X such that the restriction T|z of T to
Z is an isomorphism of Z onto T(Z).

Equivalently, for each infinite-dimensional closed subspace Z of X,

inf {|| Tx||y : |Ix]|x =1,x € Z} = 0.

If T has the property that given any € > 0 there exists N(¢) € N such
that if E is a subspace of X with dim E > N(¢), then there exists x € E,
with ||x||, = 1, such that || Tx||,, <, then T is said to be finitely
strictly singular.
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Strictly singular maps

Let X, Y be Banach spaces with norms |||, ||-||y respectively. The
map T : X — Y is said to be strictly singular if there is no infinite
dimensional closed subspace Z of X such that the restriction T|z of T to
Z is an isomorphism of Z onto T(Z).

Equivalently, for each infinite-dimensional closed subspace Z of X,

inf {|| Tx||y : |Ix]|x =1,x € Z} = 0.

If T has the property that given any € > 0 there exists N(¢) € N such
that if E is a subspace of X with dim E > N(¢), then there exists x € E,
with ||x||, = 1, such that || Tx||,, <, then T is said to be finitely
strictly singular.

This second definition can be expressed in terms of the Bernstein
numbers by (T) of T. We recall that these are given, for each k € N, by

be(T) = sup

in || .
ECX dim E=k x€E, |Ix||x=1 17l

Then T is finitely strictly singular if and only if
bi(T) — 0 as k — oo.
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Strictly singular maps

The relations between these notions and that of compactness of T are
illustrated by the following diagram:

T compact = T finitely strictly singular = T strictly singular

and each reverse implication is false in general.
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Sobolev Embedding

If T is an embedding map between function spaces on an open set
Q C R", possible reasons for noncompactness include:
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(i) © unbounded

(i) if Q bounded then due bad boundary 012,
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Sobolev Embedding

If T is an embedding map between function spaces on an open set

Q C R", possible reasons for noncompactness include:

(i) © unbounded

(ii) if Q bounded then due bad boundary 0,or

(iii) due particular values of the parameters involved in functions spaces
(inner structure of spaces)
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Sobolev Embedding

If T is an embedding map between function spaces on an open set

Q C R", possible reasons for noncompactness include:

(i) © unbounded

(ii) if Q bounded then due bad boundary 0,or

(iii) due particular values of the parameters involved in functions spaces
(inner structure of spaces)

Sobolev Embedding: We consider: id : Wy ?(Q) — L9(Q) with k € N,
pE[l,o0), kp <n, 1<q<np/(n— kp).
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Sobolev Embedding - case (i)

Question: Let n =2, Q =R x (0,7) and /: W;P(Q) — LP(Q). We can
see that / is noncompact and that 5(/) > 0. What is the exact value of

p(1?
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Sobolev Embedding - case (i)

Question: Let n =2, Q =R x (0,7) and /: W;P(Q) — LP(Q). We can
see that / is noncompact and that 5(/) > 0. What is the exact value of
B(1y?

Answer:(Edmunds, Mihula, L, 21) Let n > 2, k€ {1,...,n— 1},

1< p<ooand —0o < a; < bj < 00. Set D =Rk x I'I;’;lk(a,-,b,-); the
norm on Wy "?(D) is defined by:

1/p
(Nl o+ NV ulnlle 5)

Consider I, : WyP(D) — LP(D). Then

5 p n—k —-1/p
Bllp) = Il = <1 +(p—1) (ﬂ) > _(bi- af)“’)

psin(r/n) ) =
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Sobolev Embedding - case (i)

Question: Let n =2, Q =R x (0,7) and /: W;P(Q) — LP(Q). We can
see that / is noncompact and that 5(/) > 0. What is the exact value of
B(1y?

Answer:(Edmunds, Mihula, L, 21) Let n > 2, k€ {1,...,n— 1},

1< p<ooand —0o < a; < bj < 00. Set D =Rk x I'I;’;lk(a,-,b,-); the
norm on Wy "?(D) is defined by:

1/p
(Nl o+ NV ulnlle 5)

Consider I, : WyP(D) — LP(D). Then

5 p n—k —-1/p
Bllp) = Il = <1 +(p—1) (ﬂ) > _(bi- af)“’)

psin(r/n) ) =

Note: For p =2, n=2, by — a; = 7 we have B(/) = ||/]| = 1/V2.
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Sobolev Embedding - case (i)

By product: Set R =7_,(a;, b;). Note that the extreme function for
Rayleigh quotient
Il grad ule ||} g

0F£uE W, P(R) [ull? &

is the first eigenvalue of the pseudo-p-Laplacian operator with Dirichlet
conditions, i.e.: Ayu = Ay|ulP2u, with u =0 on OR, where

~ "0 (|oulP? du
ApUigax; <‘8X,' 8x,-> '
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Sobolev Embedding - case (i)

By product: Set R =7_,(a;, b;). Note that the extreme function for
Rayleigh quotient
Il grad ule ||} g

0F£uE W, P(R) [ull? &

is the first eigenvalue of the pseudo-p-Laplacian operator with Dirichlet
conditions, i.e.: Ayu = Ay|ulP2u, with u =0 on OR, where

~ "0 (|oulP? du
ApUigax; <‘8X,' 8x,-> '

And the first eigenfunction is u(x) = IN}_; sin, %) ,x€R.
Also this function is the extreme function for Sobolev embedding:
I WyP(R) — LP(R).

More-over functions of the form I7_; sin, %) ,X € R, and
ki € N are eigenfunctions of the above pseudo-p-Laplacian.
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Sobolev Embedding - case (i)

By product: Set R =7_,(a;, b;). Note that the extreme function for
Rayleigh quotient
Il grad ule ||} g

0F£uE W, P(R) [ull? &

is the first eigenvalue of the pseudo-p-Laplacian operator with Dirichlet
conditions, i.e.: Ayu = Ay|ulP2u, with u =0 on OR, where

~ "0 (|oulP? du
ApUigax; <‘8X,' 8x,-> '

And the first eigenfunction is u(x) = IN}_; sin, (L;a) ,

L o x € R.
Also this function is the extreme function for Sobolev embedding:
I WyP(R) — LP(R).

More-over functions of the form M, sin, %) ,x € R, and
ki € N are eigenfunctions of the above pseudo-p-Laplacian.

(Question: Are all eigenfunctions of that form?)
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Sobolev Embedding - case (ii)

When Q C R” is bounded and has a "good" boundary then, obviously,
E: W}(Q) — Ly(R) is compact.

Jan Lang, (The Ohio State University) Sobolev embedding and quality of its non-compactness



Sobolev Embedding - case (ii)

When Q C R” is bounded and has a "good" boundary then, obviously,
E: W}(Q) — Ly(R) is compact.

Theorem (Edmunds , L. 22)

Let n> 2. There is a bounded open set Q C R" such that E : W (RQ)
— Ly(Q) is not strictly singular.
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Sobolev Embedding - case (ii)

112 32 2

Figure: The domain Q3

Seta; =), kP (ieN),a =0, and Qp m = QN ([0, 2b] x [0, am])
Now we construct a continuous function fj, n, : Qp » — R that has the
shape of an increasing staircase with slope 1/b on C; and landings on A;
and B; with zero value at By. More precisely we can write that:

O, XEBQUC1UA1,
fo.m(x)=4q 2i—2, XEA,,(/ EN)
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Sobolev Embedding - case (ii)

A routine calculations show that

m 1/p
HVfb:me,Qb,m = (Z |C,-> b=l = p—(P-1)/p (am)l/p,
i=1

[m/2] 1/p /2 \ /P
lomllpo,. ~ [ 3 {(zi )Py (2/)—"} Pl [ ST 1) be
i=1 i=1

= [m/2]*/Pb'/P,  where [] is the greatest integer function.

Thus

cup g
u 2
gewi (. 1VElpa,, ~

b2~ ([m/zlby/ﬁ

am
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Sobolev Embedding - case (ii)

Now we set

Q= ((0,1) x (=1,0)) U (UiZy ((2b;,m; U (0, 2b7) x {0}) + (%, 0))) -

To justify this, consider the sequence {f;} of functions defined by
fi(x) = fp,.m;(x — %), where X; = (x;,0). Then supp f; C Qp, m, + X; and

||f;‘Hp,Q >’Y
IVill,a ~

The claim follows.
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Sobolev Embedding - case (iii)

Let k,n € N, k < n, Q open subset in R", p € [1,n/k) and p* = nf’;{p
then one has
h:VEP — 1P (Q)

where [[ully5r = )51 1Dl
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Sobolev Embedding - case (iii)

Let k,n € N, k < n, Q open subset in R", p € [1,n/k) and p* = nf’;{p

then one has

h:VEP — 1P (Q)

where [[uly . = X3j51-4 107l
We know that /; is maximally non-compact (Hencl 03).
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Sobolev Embedding - case (iii)

Let k,n € N, k < n, Q open subset in R", p € [1,n/k) and p* = nf’;{p
then one has

h:VEP — 1P (Q)
where [|ul| e = 3751 [|D7 -

We know that /; is maximally non-compact (Hencl 03).

Note that LP" is not the optimal target space which is Lorentz space
LP P, Consider now:

b Vok’p(Q) — LP79(Q), with p* < g < co.
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Sobolev Embedding - case (iii)

Let k,n € N, k < n, Q open subset in R", p € [1,n/k) and p* = nf’;{p
then one has
h:VEP — 1P (Q)

where [l o = 3251 1Dl

We know that /; is maximally non-compact (Hencl 03).

Note that LP" is not the optimal target space which is Lorentz space
LP"-P. Consider now:

b Vok’p(Q) — LP79(Q), with p* < g < co.

Then for px < g < oo we have maximally non-compact embedding
(Bouchala, 20).

Jan Lang, (The Ohio State University) Sobolev embedding and quality of its non-compactness



Sobolev Embedding - case (iii)

Let k,n € N, k < n, Q open subset in R", p € [1,n/k) and p* = nf’;{p
then one has
h:VEP — 1P (Q)
where [[ul .0 = )51 D%l
We know that /; is maximally non-compact (Hencl 03).

Note that LP" is not the optimal target space which is Lorentz space
LP P, Consider now:

b Vok’p(Q) — LP79(Q), with p* < g < co.

Then for px < g < oo we have maximally non-compact embedding
(Bouchala, 20). Question what about the target space LP"o° e

I VEP(Q) — LP°(9).
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Sobolev Embedding - case (iii)

I VEP(Q) — LP°(9).

Problem - LP">°°(Q) is not disjointly superadditive.
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Sobolev Embedding - case (iii)

I VEP(Q) — LP>(Q).
Problem - LP">°°(Q) is not disjointly superadditive.
Definition: We say that a (quasi)normed linear space X(2) containing
functions defined on Q is disjointly superadditive if there exist v > 0 and

C > 0 such that for every m € N and every finite sequence of functions
{fi}i, with pairwise disjoint supports in Q one has

m m
Y k@ < €I il
k=1 k=1
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Sobolev Embedding - case (iii)

I VEP(Q) — LP>(Q).
Problem - LP">°°(Q) is not disjointly superadditive.
Definition: We say that a (quasi)normed linear space X(2) containing
functions defined on Q is disjointly superadditive if there exist v > 0 and

C > 0 such that for every m € N and every finite sequence of functions
{fi}i, with pairwise disjoint supports in Q one has

m m
Y k@ < €I il
k=1 k=1

Answer: I3 is maximally non-compact embedding. (Musil, Olsak, Pick,
L. 2020)

b VEP(Q) = LP9Q), p<q<oo.
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Sobolev Embedding - case (iii)

Consider:
Iy : VELRHQ) = 12°(Q), QCR“k<n

(the optimal target space L>°!)
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Sobolev Embedding - case (iii)

Consider:
Iy : VELRHQ) = 12°(Q), QCR“k<n

(the optimal target space L>°!)

Using Triangle coloring problem we obtain:

B(1) = 27471y

Then I, is not maximally non-compact embedding.
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Sobolev Embedding - case (iii)

Let us consider:
I ViL9(Q) — C(Q), @ cubein R, d>2.

and
le : VgL*(l) = C(I), ICR
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Sobolev Embedding - case (iii)
Let us consider:
I ViL9(Q) — C(Q), @ cubein R, d>2.
and
le : VgL*(l) = C(I), ICR

We need Zig-Zag theorem:

Let E be an n-dimensional subspace of C(/) where [ is any bounded
closed interval. Then to every ¢ > 0 there exist a function g € E,

llglloc < 1+¢, and an n-tuple of points t; < t, < --- < t, in | such that

g(ty) =(-1)k for1<k<n.
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Sobolev Embedding - case (iii)

In case
ls : V(}Ll(l) - C(h, ICR

we have, use the above zig-zag theorem [L,Musil 18] and obtain:

1
lg) = —
s,,( 6) 2n
where s, stands for n-th Bernstein or isomorphism numbers,
sa(ls) =1/2

where s, stands for approximation or Gelfand numbers for every n > 2,
dn(le) =1/4

where d, stands for n-th Kolmogorov number.
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Strictly singular map

For embedding
Is : ViL9(Q) — C(Q), @ cubein R, d >2.

we need higher dimensional zig-zag theorem but such theorem does not
exist.
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Strictly singular map

For embedding
Is : ViL9(Q) — C(Q), @ cubein R, d >2.

we need higher dimensional zig-zag theorem but such theorem does not
exist.

We need to use Hilbert curves:

L/
L L
I -
1 'L
SRy ARy &
L [ ] I
P
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Sobolev Embedding - case (iii)

Then for embedding
Is : ViL9(Q) — C(Q), @ cubein R, d >2.

We obtain [L,Musil 18]:
sa(ls) =< n1/2

where s, stands for n-th Bernstein or isomorphism numbers,
5,,(/5) =1

where s, stands for approximation, Gelfand or Kolmogorov numbers.
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Sobolev Embedding - case (iii)

Then for embedding

Is : ViL9(Q) — C(Q), @ cubein R, d >2.

We obtain [L,Musil 18]:
sa(ls) =< n1/2

where s, stands for n-th Bernstein or isomorphism numbers,
5,,(/5) =1
where s, stands for approximation, Gelfand or Kolmogorov numbers.

Generalization:

Let X(Q) be any Banach function space over the cube Q in RY, d > 2,
satisfying X(Q) C L91(2). Then for every n € N

sa(VEX(Q) — C(Q)) = n~ 4,

in which s, stands for n-th Bernstein or isomorphism number.
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Strictly singular map

In [Bourgain, Gromov 87] we have: Let d > 1 and Q is the unit ball in
R?. Then
ba(1: WHH(Q) — Lyj(g—1)(Q)) < can™ /¢

where ¢4 only depends on d.
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Strictly singular map

In [Bourgain, Gromov 87] we have: Let d > 1 and Q is the unit ball in

RY. Then
ba(1: WHH(Q) — Lyj(g—1)(Q)) < can™ /¢

where ¢4 only depends on d.

Natural Question: Are all extremal Sobolev embedding finitely strictly
singular?
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Strictly singular map

In [Bourgain, Gromov 87] we have: Let d > 1 and Q is the unit ball in
R?. Then
ba(1: WHH(Q) — Lyj(g—1)(Q)) < can™ /¢

where ¢4 only depends on d.

Natural Question: Are all extremal Sobolev embedding finitely strictly
singular?

Answer: No
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Strictly singular map

In [Bourgain, Gromov 87] we have: Let d > 1 and Q is the unit ball in
R?. Then
ba(1: WHH(Q) — Lyj(g—1)(Q)) < can™ /¢

where ¢4 only depends on d.

Natural Question: Are all extremal Sobolev embedding finitely strictly
singular?

Answer: No (but in some cases yes)
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Sobolev Embedding - case (iii)

In [L,Mihula 22] it was proved:
Let Q C RY be a nonempty bounded open set, me N, 1 < m < d, and
p € [l,d/m).
Denote by /, the identity operator /,: VJ"P(Q) — LP"P(Q), where
p* =dp/(d — mp).
(i) We have
b, (1) = ||| for every n € N, (1)

where ||/|| denotes the operator norm. Furthermore, / is not strictly
singular.
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Sobolev Embedding - case (iii)

In [L,Mihula 22] it was proved:
Let Q C RY be a nonempty bounded open set, me N, 1 < m < d, and
p € [l,d/m).
Denote by /, the identity operator /,: VJ"P(Q) — LP"P(Q), where
p* =dp/(d — mp).
(i) We have
b, (1) = ||| for every n € N, (1)

where ||/|| denotes the operator norm. Furthermore, / is not strictly
singular.

(ii) Denote by /,- the identity operator /,-: V"P(Q) — LP"(Q), where
p* = dp/(d — mp). There exists ny € N, depending only on d and m,
such that

al3

Gn=d < by(ly-) < Gon~ 9 for every n > nq. (2)

Here C; and G, are constants depending only on d, m and p.
In particular, I,- is finitely strictly singular.
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