Ordinary differential operators and connections Application to curvilinear webs

Daniel Lehmann

Formerly, professor at the University of Montpellier II, France

email: lehm.dan@gmail.com,

Many thanks to the organizers of this conference for doing this job, despite of the war in their country. We all have a thought to them.

Thanks also for inviting me to participate.

Framework:

A priori C^{∞} or holomorphic. Analyticity (real or complex) required for thm 1.

Data:

- vector bundle $E \to V_n$ (rank p)
- vector bundle $F \to V_n$ (rank q)
- linear differential operator = epimorphism

$$D: J^kE \to F \to 0$$

In practice, we only assume that D has a constant rank q at each point m of V, and replace the initial F by Im(D)].

Looking for solutions s of the PDE

(*)
$$\mathcal{D}s \equiv 0$$
, where $\mathcal{D}s := D(j^k s)$.

S := vector space of solutions,

 $S_m := \{\text{germs of solutions at generic } m \in V\}.$

Our aim:

1- Find an upper-bound for $dim(\mathcal{S}_m)$ (if any)

$$\pi(n,k,p,q)$$
.

2- Define a vector bundle \mathcal{E} of rank $\pi(n, k, p, q)$ and a <u>connection</u> ∇ on it (when possible), s.t.

$$\mathcal{S} \cong \nabla$$
 – invariant sections of \mathcal{E} .

$$(dim(S_m = \pi(n, k, p, q)) \iff (the curvature vanishes).$$

3- Apply these results to abelian relations of <u>curvilinear webs</u> (definitions recalled below).

Notation:
$$c(n,h) := \binom{n-1+h}{h}$$

- dimension of the vector space of homogeneous polynomials of degree h with n variables,
- rank of $S^hT^*(V)$,
- number of multi-indices $I = (i_1, ..., i_n)$ of partial derivatives of order |I| = h,

Recall : $\sum_{\ell=0}^h c(n,\ell) = c(n+1,h)$. (homogeneization of polynomials by adding one more variable)

Prolongations: $D_h: J^hE \to J^{h-k}F$ $(h \ge k)$ by all (h-k) derivatives of (*).

Formal solutions at order h:

$$\begin{split} R_h := Ker(D_h) \\ R_{h+1} = J^1 R_h \cap J^{h+1} E \text{ (intersection in } J^1 J^h E) \end{split}$$

Method for aim nr.1: Estimating the rank of formal solutions R_{∞} , and use analyticity. First, estimating each step $R_h \to R_{h-1}$ of the tower

$$R_{\infty} \to \dots \to R_h \to R_{h-1} \to \dots \to R_k \to J^{k-1}E.$$

Linear systems $\Sigma(r_{h-1})$

Let $r_{h-1} \in R_{h-1}$. $\Sigma(r_{h-1}) = \text{linear system of equations. whose set}$ $Sol(r_{h-1})$ of solutions is $\{r_h \in R_h \text{ over } r_{h-1}\}$.

In particular, for $r_{h-1}=0$, the associated homogeneous system writes

$$<\sigma_h(D), r_h>=0$$
, where

 $\sigma_h(D)$, the **principal symbol** of D_h , denotes the restriction of D_h to $ker(J^hE \to J^{h-1}E) = S^hT^*(V) \otimes E$, (values into $S^{h-k}T^*(V) \otimes F$).

nr.equations: $rk(S^{h-k}T^*(V)\otimes F) = q.c(n,h-k)$ nr.unknowns: $rk(S^hT^*(V)\otimes E) = p.c(n,h)$.

Ordinary differential operators

Definition 1: D is said to be <u>ordinary</u> if $\sigma_k(D)$ has rang q, and all $\sigma_h(D)$ have max. rank

$$inf(c(n,h-k).q, c(n,h).p).$$

If $\frac{p}{q} < \frac{c(n,h-k)}{c(n,h)}$, then $\Sigma(r_{h-1})$ is overdetermined.

If $\frac{p}{q} \geq \frac{c(n,h-k)}{c(n,h)}$ (q not too big), $Sol(r_{h-1})$ is an affine space of dimension c(n,h).p-c(n,h-k).q.

The function $\varphi: h \mapsto \frac{c(n,h-k)}{c(n,h)}$ is increasing from $\frac{1}{c(n,k)}$ to 1, when h goes from k to $+\infty$. Hence, 3 cases :

I : If $q \leq p$ (very few equations), then $\operatorname{rank}(R_h)$ increases to $+\infty$, and $\dim(\mathcal{S})$ may be infinite.

II : If q > p.c(n,k) (too many equations), then $dim(\mathcal{S}) = 0.$

III: If $p < q \le p.c(n,k)$, let $h_0 :=$ the biggest h $(h \ge k)$ such that $q.c(n,h-k) \le p.c(n,h)$ (the integral part of $\frac{p(n-1)}{q-p}$ when k=1).

case III:
$$p < q \le p.c(n,k)$$

<u>finite</u> number of conditions for D to be ordinary:

proposition 1:

If $\sigma_h(D)$ has rank maximal for $h \leq h_0 + 1$ (for $h \leq h_0$ is sufficient, if $q.c(n,h_0-k) = p.c(n,h_0)$), then D is ordinary.

behaviour of the sequence
$$\left(\rho_h := rank(R_h)\right)_h$$
 $\rho_k < \rho_{k+1} < \ldots < \rho_{h_0} \geq \rho_{h_0+1} \geq \rho_{h_0+2} \geq \ldots \geq \rho_{\infty}$

Proposition 2 : $0 \le \rho_{\infty} \le \rho_{h_0}$.

Theorem 1:([L2]) If the framework is <u>analytic</u> (real or complex), if $p < q \le p.c(n,k)$, and if D is ordinary, then :

- the space S_m of germs of solutions of (*) at a point m of V is a finite dimensional vector space of dimension at most $\pi(k, n, p, q) := \rho_{h_0}$.

$$\rho_{h_0} = p.c(n+1, k-1) + \sum_{h=k}^{h_0} c(n, h).(p - q.\varphi(h)).$$

$$= p.c(n+1,h_0) - q.c(n+1,h_0-k).$$

- a germ of solution is defined by its h_0 -jet.

Proof: analyticity implies $dim(S_m) \leq \rho_{\infty}$.

Connection in the ordinary calibrated case*

Definition 2: D is said to be <u>calibrated</u> if

$$q.c(n, h_0 - k) = p.c(n, h_0),$$

(if k = 1, $h_0 = \frac{p(n-1)}{q-p}$, which is an integer).

Then, $R_{h_0} \xrightarrow{\pi_0} R_{h_0-1}$ is an <u>isomorphism</u>.

Recall:
$$R_{h_0} = \left(J^1(R_{h_0-1}) \cap J^{h_0}E\right) \subset J^1J^{h_0-1}E$$
).

$$u: R_{h_0-1} \xrightarrow{(\pi_0)^{-1}} R_{h_0} \xrightarrow{\iota} J^1(R_{h_0-1})$$

 $u := \iota \circ (\pi_0)^{-1}$ is a <u>splitting</u> of

$$0 \to T^*(V) \otimes R_{h_0-1} \to J^1 R_{h_0-1} \xrightarrow{\stackrel{u}{\longleftrightarrow}} R_{h_0-1} \to 0,$$

= connection on $\mathcal{E}:=R_{h_0-1}$ (rank $\pi(k,n,p,q)$),

$$\nabla \sigma = j^1 \sigma - u(\sigma).$$

Theorem 2: ([L2])

(i)
$$\left(s \in \mathcal{S}\right) \iff \left(\nabla(j^{h_0-1}s) = 0\right)$$

(ii)
$$dim(S) \leq dim(S_m) \leq \pi(k, n, p, q)$$

(iii)
$$\left(dim(\mathcal{S}_m) = \pi(k, n, p, q)\right) \iff \left(vanishing\ curvature\right)$$

*in the real case, does not need analyticity

Curvilinear webs

Data: d non-vanishing vector fields ∂_{λ} on V (d > n), in general position, $\lambda = 1, ..., d$.

Abelian relations (of degree (n-1)) = family $(\eta_{\lambda})_{\lambda}$ of (n-1)-forms on V s.t. $\sum_{\lambda} \eta_{\lambda} = 0$, and $\forall \lambda, \ \eta_{\lambda}$ is ∂_{λ} -basic : $\iota_{\partial_{\lambda}} \eta_{\lambda} = 0, L_{\partial_{\lambda}} \eta_{\lambda} = 0$.

Definition of E:

$$\begin{array}{l} 0 \to T_{\lambda} \to T(V) \to N_{\lambda} \to 0 \\ 0 \leftarrow T_{\lambda}^* \leftarrow T^*(V) \leftarrow N_{\lambda}^* \leftarrow 0 \\ T_{\lambda} := \text{v.bundle generated by } \partial_{\lambda} \text{ (rank 1),} \\ N_{\lambda} := \text{normal bundle (rank } n-1), \end{array}$$

E := Ker(Tr), v.bundle (rank : d - n)

Definition of \mathcal{D} :

$$\begin{split} L_{\lambda} &:= \iota_{\partial_{\lambda}} \circ d + d \circ \iota_{\partial_{\lambda}} \quad \text{(Lie derivative by ∂_{λ}),} \\ \mathcal{D} \Big((\eta_{\lambda})_{\lambda} \Big) &:= \Big(L_{\lambda} (\eta_{\lambda}) \Big)_{\lambda}. \end{split}$$

Abelian relations = solutions of $(\mathcal{D}s = 0)$.

Properties of \mathcal{D}

order k = 1: $\mathcal{D}s$ depends only on the 1-jet j^1s ,

rank E : p = d - n,

 $\mathsf{rank}\ F:\ q=d-1,$

case III : p < q < p.n,

D is always **ordinary**,

D is always **calibrated** : $\frac{p(n-1)}{q-p}$ is the integer

$$h_0 = d - n,$$

$$\pi(n,1,d-n,d-1) = \sum_{h=0}^{d-n-1} {n-2+h \choose h} (d-n-h)$$

$$= \begin{pmatrix} d-1 \\ n \end{pmatrix},$$

recovering the Damiano's bound ([D]).

Theorem 3 : ([L])

The Damiano's bound for the rank of a curvilinear web is reached iff the curvature of the tautological connection on R_{d-n-1} vanishes.

Example of the (n+3)-web $W_{0,n+3}$:

$$\partial_i = \frac{\partial}{\partial x_i}$$
 for any $i = 1, ..., n$
 $\partial_{n+1} = \sum_i x_i \ \partial_i$,
 $\partial_{n+2} = \sum_i (x_i - 1) \ \partial_i$,
 $\partial_{n+3} = \sum_i x_i (x_i - 1) \ \partial_i$.

[The Bol's web for n=2. More generally, n+2 points in general position in the n-dimensional projective space, the pencils of straight lines through each of them, and the pencil of the rational algebraic curves of degree n going through each of them].

Damiano claimed: they all have maximal rank. He proved it for n even ([D]), and Pirio for n odd ([Pi]). Not easy: they needed to exhibit among them the so called "Euler relation", generalizing the relation of the dilogarithms in case n=2.

For n=3, we proved the vanishing of the curvature (using Maple), hence recovering the maximal rank 10, as well as maximality of the rank for the 4 and 5-subwebs, without exhibit any abelian relation .

References

- [D] D.B. Damiano, Abelian equations and characteristic classes, Thesis, Brown University, (1980), and Webs and characteristic forms on Grassmann manifolds, Am.J. of Maths.105, 1983, 1325-1345.
- [H] A. Hénaut, *Planar web geometry through abelian relations and connections* Annals of Math. 159 (2004) 425-445.
- [L] D. Lehmann, *Courbure des tissus en courbes*, arXiv:2401.15988, v1(29/01/2024).
- [DL] J.P. Dufour, D. Lehmann, Etude des (n + 1)-tissus de courbes en dimension n, Comptes Rendus Maths. Ac. Sc. Paris, vol. 361, 1491-1497, 2023.
- [Pi] L. Pirio : On the (n + 3)-webs by rational curves induced by the forgetful maps on the moduli spaces $\mathcal{M}_{0,n+3}$, arXiv 2204.04772.v1, [Math AG], 10-04-2022.