Ordinary differential operators and connections Application to curvilinear webs

Daniel Lehmann

Formerly, professor at the University of Montpellier II, France

email : lehm.dan@gmail.com,

Many thanks to the organizers of this conference for doing this job, despite of the war in their country. We all have a thought to them.

Thanks also for inviting me to participate.

Framework :

A priori C^{∞} or holomorphic. Analyticity (real or complex) required for thm 1.

Data :

- vector bundle $E \to V_n$ (rank p)
- vector bundle $F \to V_n$ (rank q)
- linear differential operator $=$ epimorphism

 $D: J^kE\rightarrow F\rightarrow 0$

In practice, we only assume that D has a constant rank q at each point m of V, and replace the initial F by $Im(D)$].

Looking for solutions s of the PDE

(*) $Ds \equiv 0$, where $Ds := D(j^k s)$.

 S := vector space of solutions, $\mathcal{S}_m := \{$ germs of solutions at generic $m \in V\}.$

Our aim :

1- Find an upper-bound for $dim(S_m)$ (if any)

 $\pi(n, k, p, q)$.

2- Define a vector bundle $\mathcal E$ of rank $\pi(n,k,p,q)$ and a connection ∇ on it (when possible), s.t.

 $S \cong \nabla$ – invariant sections of $\mathcal{E}.$

 $\big(dim(\mathcal{S}_m=\pi(n,k,p,q)\big)\Longleftrightarrow\big(\text{the curvature vanishes}\big).$ 3- Apply these results to abelian relations of curvilinear webs (definitions recalled below).

Notation : $c(n,h) := \binom{n-1+h}{h}$ h \setminus

- dimension of the vector space of homogeneous polynomials of degree h with n variables,

- rank of $S^hT^\ast(V)$,

- number of multi-indices $I = (i_1, ..., i_n)$ of partial derivatives of order $|I| = h$,

Recall : $\sum_{\ell=0}^{h} c(n, \ell) = c(n + 1, h)$. (homogeneization of polynomials by adding one more variable)

Prolongations : $D_h: J^hE \to J^{h-k}F$ $(h \geq k)$ by all $(h - k)$ derivatives of $(*)$.

Formal solutions at order h : $R_h := Ker(D_h)$ $R_{h+1} = J^1 R_h \cap J^{h+1} E$ (intersection in $J^1 J^h E$)

Method for aim nr.1 : Estimating the rank of formal solutions R_{∞} , and use analyticity. First, estimating each step $R_h \rightarrow R_{h-1}$ of the tower

$$
R_{\infty} \to \dots \to R_h \to R_{h-1} \to \dots \to R_k \to J^{k-1}E.
$$

Linear systems $\Sigma(r_{h-1})$

Let $r_{h-1} \in R_{h-1}$. $\Sigma(r_{h-1})$ = linear system of equations. whose set $Sol(r_{h-1})$ of solutions is $\{r_h \in R_h$ over $r_{h-1}\}.$

In particular, for $r_{h-1} = 0$, the associated homogeneous system writes

$$
\langle \sigma_h(D), r_h \rangle = 0, \text{ where}
$$

 $\sigma_h(D)$, the **principal symbol** of D_h , denotes the restriction of D_h to $ker(J^hE\,\rightarrow\,J^{h-1}E)\,=\,$ $S^h T^*(V) \otimes E$, (values into $S^{h-k} T^*(V) \otimes F$).

nr.equations: $rk\bigl(S^{h-k}T^*(V){\otimes}F\bigr) = q.c(n,h-k)$ nr.unknowns: $rk\bigl(S^hT^*(V)\otimes E\bigr) = p.c(n,h).$

Ordinary differential operators

Definition 1 : D is said to be ordinary if $\sigma_k(D)$ has rang q, and all $\sigma_h(D)$ have max. rank

$$
inf\Bigl(c(n,h-k).q \,\,,\,\,c(n,h).p\Bigr).
$$

If $\frac{p}{q} < \frac{c(n,h-k)}{c(n,h)}$ $\frac{(n,n-k)}{c(n,h)},$ then $\Sigma(r_{h-1})$ is overdetermined.

If $\frac{p}{q} \geq \frac{c(n,h-k)}{c(n,h)}$ $\frac{(n,n-k)}{c(n,h)}$ $(q$ not too big), $Sol(r_{h-1})$ is an affine space of dimension $c(n, h)$. $p - c(n, h - k)$.q.

The function $\varphi: h \mapsto \frac{c(n,h-k)}{c(n,h)}$ is increasing from $\frac{1}{\sqrt{n}}$ $\frac{1}{c(n,k)}$ to 1, when h goes from k to $+\infty.$ Hence, 3 cases :

I : If $q \leq p$ (very few equations), then rank (R_h) increases to $+\infty$, and $dim(S)$ may be infinite.

II : If $q > p.c(n, k)$ (too many equations), then

$$
dim(\mathcal{S})=0.
$$

III : If $p < q \leq p.c(n,k)$, let $h_0 :=$ the biggest h $(h \ge k)$ such that $q.c(n, h - k) \le p.c(n, h)$ (the integral part of $\frac{p(n-1)}{q(n-1)}$ $\frac{n-1}{q-p}$ when $k=1$).

case III : $p < q \leq p.c(n, k)$

finite number of conditions for D to be ordinary:

proposition 1 :

If $\sigma_h(D)$ has rank maximal for $h\leq h_0+1$ f for $h \leq h_0$ is sufficient, if $q.c(n, h_0-k) = p.c(n, h_0)$, then D is ordinary.

behaviour of the sequence $\big(\rho_h := rank(R_h)\big)$ h $\rho_k < \rho_{k+1} < ... < \rho_{h_0} \ge \rho_{h_0+1} \ge \rho_{h_0+2} \ge ... \ge \rho_{\infty}$

Proposition 2 : $0 \leq \rho_{\infty} \leq \rho_{h_0}$.

Theorem 1: ($[L2]$) If the framework is analytic (real or complex), if $p < q \leq p.c(n,k)$, and if D is ordinary, then :

- the space S_m of germs of solutions of $(*)$ at a point m of V is a finite dimensional vector space of dimension at most $\pi(k, n, p, q) := \rho_{h_0}.$

$$
\rho_{h_0} = p.c(n+1, k-1) + \sum_{h=k}^{h_0} c(n, h) \cdot (p - q.\varphi(h)).
$$

$$
\bigg(=p.c(n+1,h_0)-q.c(n+1,h_0-k)\bigg).
$$

- a germ of solution is defined by its h_0 -jet.

Proof : analyticity implies $dim(S_m) \leq \rho_{\infty}$.

Connection in the ordinary calibrated case*

Definition 2: D is said to be calibrated if

 $q.c(n, h_0 - k) = p.c(n, h_0),$ (if $k = 1$, $h_0 = \frac{p(n-1)}{q-p}$, which is an integer). Then, $R_{h_0} \xrightarrow{\pi_0} R_{h_0-1}$ is an <u>isomorphism</u>.

Recall :
$$
R_{h_0} = (J^1(R_{h_0-1}) \cap J^{h_0}E) \subset J^1J^{h_0-1}E
$$
).
\n $u: R_{h_0-1} \xrightarrow{(\pi_0)^{-1}} R_{h_0} \xrightarrow{\iota} J^1(R_{h_0-1})$
\n $u := \iota \circ (\pi_0)^{-1}$ is a splitting of
\n $0 \to T^*(V) \otimes R_{h_0-1} \to J^1R_{h_0-1} \xrightarrow{\iota \omega} R_{h_0-1} \to 0$,
\n= connection on $\mathcal{E} := R_{h_0-1}$ (rank $\pi(k, n, p, q)$),

$$
\nabla \sigma = j^1 \sigma - u(\sigma).
$$

Theorem $2: (L2)$

$$
(i) \qquad \left(s \in \mathcal{S}\right) \Longleftrightarrow \left(\nabla (j^{h_0 - 1}s) = 0\right)
$$

(ii) $dim(S) \leq dim(S_m) \leq \pi(k, n, p, q)$

 $(iii) (dim(S_m) = \pi(k, n, p, q)) \Longleftrightarrow (vanishing curvature)$

*in the real case, does not need analyticity

Curvilinear webs

Data : d non-vanishing vector fields ∂_{λ} on V $(d > n)$, in general position, $\lambda = 1, ..., d$.

Abelian relations (of degree $(n-1)$) = family $(\eta_{\lambda})_{\lambda}$ of $(n-1)$ -forms on V s.t. $\sum_{\lambda}\eta_{\lambda}=0$, and $\forall \lambda$, η_{λ} is ∂_{λ} -basic : $\iota_{\partial_{\lambda}} \eta_{\lambda} = 0$, $L_{\partial_{\lambda}} \eta_{\lambda} = 0$.

Definition of E : $0 \to T_{\lambda} \to T(V) \to N_{\lambda} \to 0$ $0 \leftarrow T_{\lambda}^* \leftarrow T^*(V) \leftarrow N_{\lambda}^* \leftarrow 0$ T_{λ} : $=$ v.bundle generated by ∂_{λ} (rank 1), N_{λ} := normal bundle (rank $n-1$),

$$
\begin{aligned}\n\bigwedge N_{\lambda}^* &:= \{ \text{forms } \eta \text{ on } V \text{ s.t. } \iota_{\partial_{\lambda}} \eta = 0 \}, \\
\bigoplus_{\lambda=1}^d \left(\bigwedge^{n-1} N_{\lambda}^* \right) &\xrightarrow{Tr} \bigwedge^{n-1} T^*(V) \\
Tr\big((\eta_{\lambda})_{\lambda=1,\cdots,d} \big) &:= \sum_{\lambda=1}^d \eta_{\lambda}\n\end{aligned}
$$

 $E := Ker(Tr)$, v.bundle (rank : $d-n$)

Definition of D: $L_{\lambda} := \iota_{\partial_{\lambda} \circ d} + d \circ \iota_{\partial_{\lambda}}$ (Lie derivative by ∂_{λ}), $\mathcal{D}((\eta_{\lambda})_{\lambda}) := (L_{\lambda}(\eta_{\lambda}))$

λ .

Abelian relations = solutions of $(Ds = 0)$.

Properties of D

order $k=1$: $\mathcal{D}s$ depends only on the 1-jet $j^1s,$ rank $E : p = d - n$, rank $F : q = d - 1$, case III : $p < q < p.n$, D is always ordinary, D is always calibrated : $\frac{p(n-1)}{n-p}$ $\overline{q-p}$ is the integer $h_0 = d - n$, $\pi(n, 1, d-n, d-1) =$ $d \sum$ $n-1$ $h=0$ $(n - 2 + h)$ h \setminus $(d-n-h)$ = $\int d-1$ \overline{n} \setminus ,

recovering the Damiano's bound ([D]).

Theorem $3:([L])$

The Damiano's bound for the rank of a curvilinear web is reached iff the curvature of the tautological connection on R_{d-n-1} vanishes.

Example of the $(n+3)$ -web $W_{0,n+3}$:

$$
\partial_i = \frac{\partial}{\partial x_i} \text{ for any } i = 1, ..., n
$$

\n
$$
\partial_{n+1} = \sum_i x_i \partial_i,
$$

\n
$$
\partial_{n+2} = \sum_i (x_i - 1) \partial_i,
$$

\n
$$
\partial_{n+3} = \sum_i x_i (x_i - 1) \partial_i.
$$

The Bol's web for $n = 2$. More generally, $n + 2$ points in general position in the n -dimensional projective space, the pencils of straight lines through each of them, and the pencil of the rational algebraic curves of degree n going through each of them].

Damiano claimed : they all have maximal rank. He proved it for n even ([D]), and Pirio for n odd ([Pi]). Not easy : they needed to exhibit among them the so called "Euler relation", generalizing the relation of the dilogarithms in case $n = 2$.

For $n = 3$, we proved the vanishing of the curvature (using Maple), hence recovering the maximal rank 10, as well as maximality of the rank for the 4 and 5-subwebs, without exhibit any abelian relation .

References

[D] D.B. Damiano, Abelian equations and characteristic classes, Thesis, Brown University, (1980), and Webs and characteristic forms on Grassmann manifolds, Am.J. of Maths.105, 1983, 1325- 1345.

[H] A. Hénaut, Planar web geometry through abelian relations and connections Annals of Math. 159 (2004) 425-445.

[L] D. Lehmann, Courbure des tissus en courbes, arXiv:2401.15988, v1(29/01/2024).

[DL] J.P. Dufour, D. Lehmann, Etude des $(n +$ 1)-tissus de courbes en dimension n , Comptes Rendus Maths. Ac. Sc. Paris, vol. 361, 1491- 1497, 2023.

[Pi] L. Pirio : On the $(n + 3)$ -webs by rational curves induced by the forgetful maps on the moduli spaces $M_{0,n+3}$, arXiv 2204.04772.v1, [Math AG], 10-04-2022.