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Properties of the hyperbolic plane

Let's suppose that H2 = {(x , y) | y > 0} is an upper half�plane

with the Riemannian metric
dx2 + dy2

y2 . It is called a hyperbolic

plane and has a constant negative Gaussian curvature −1.
Besides, H2 is a Hadamard space, so it is a complete

Riemannian manifold of nonpositive sectional curvature.
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Properties of the hyperbolic plane

Between two any points x , y ∈ H2 there is a unique geodesic

σx ,y . So we can de�ne a notion of a geodesically convex (or just

convex) set in hyperbolic plane � it is a set that for two

arbitrary points x and y of its σx ,y belongs to this set.

Particularly, the mapping

ρ : H2 ×H2 → R, ρ(x , y) = ℓ(σx ,y ), x , y ∈ H2,

where ℓ denotes a length of curve in H2, satis�es all the axioms

of metric space.
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N-foci balls in the hyperbolic plane

Let's �x in H2 any mutually distinct points x1, . . . , xN , where

N ∈ N, and such positive numbers w1, . . . ,wN ,a that
N∑

k=1
wk = 1.

De�nition

Open weighted N-foci ball, or weighted N-foci ball, is a set

A = {x ∈ H2 |w1 ρ(x , x1) + · · ·+ wN ρ(x , xN) < a}, (1)

where x1, . . . , xN are called foci of the weighted N-foci ball, a is

called a radius of the weighted N-foci ball, w1, . . . ,wN are called

weights of the foci x1, . . . , xN .
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N-foci balls in the hyperbolic plane

We can de�ne closed weighted N-foci balls the same way, having

replaced the symbol �<� by the symbol �≤� in the formula (1).

We can also de�ne weighted N-ellipses the same way, having

replaced the symbol �<� by the symbol �=� in the formula (1).
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Convexity of hyperbolic balls

Theorem

Circles in the hyperbolic plane geometrically coincide with

Euclidean circles.

Actually, if we take one circle with a hyperbolic centre in z0 ∈ C
and map it with the function

f (z) =
z − z0

z − z0
, z ∈ C,

we will obtain an image of this circle in the model of hyperbolic

disk where f (z0) = 0. Besides, all the rotations around the

coordinate centre are isometries of the hyperbolic disk. So, we

have a standard Euclidean circle, and the initial hyperbolic

circle is a Euclidean one too according to the properties of

Möbius transformations.
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Convexity of hyperbolic balls

Theorem

Any open ball of a positive radius in the hyperbolic plane is

geodesically convex.

The �rst approach. One can map the circle from hyperbolic disk

with its center in the coordinate center to the Poincaré�Klein

model of the hyperbolic plane where all the geodesics are

straight like in a Euclidean circle. Then we get a Euclidean

circle with its center in the coordinate center as image of the

researched hyperbolic circle again and it is easy to see its

convexity.
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Convexity of hyperbolic balls

The second approach. We know that we can research a usual

Euclidean circle in the upper half�plane model. All the geodesics

there are either vertical straight lines or arcs of circles with their

centers on x-axis.

There is a simple inversion which maps considered model

isometrically in itself so that the circle is mapped into another

circle where one concrete geodesic as an arc of a circle becomes a

straight vertical line. It allows to see convexity of the circle too.
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Convex functions

in Riemannian manifolds

De�nition

We will call a parametrization γ : [0,1] → H2 of the geodesics

between points a and b in H2, γ(0) = a, γ(1) = b, standard, if
for all α ∈ (0;1) the equality

ρ(a, γ(α)) = αℓ

holds. Here ℓ denotes a length of the appropriate geodesics.
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Convex functions

in Riemannian manifolds

De�nition

A function f : H2 → R is called convex in a convex set A ⊂ H2,

if for arbitrary points x1, x2 ∈ A and a standard parametrization

γ : [0,1] → H2 of the geodesics between them, γ(0) = x2,

γ(1) = x1, next inequality holds:

∀α ∈ [0,1] : f (γ(α)) ≤ αf (x1) + (1 − α)f (x2). (2)
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Convex functions

in Riemannian manifolds

Theorem

If A is a convex subset of the Riemannian manifold M, and

fk : A → R, k = 1,n, n ∈ N, are convex in A, then the function

f (x) =
n∑

k=1

wk fk (x), x ∈ A,

where w1, . . . ,wn are positive, is convex in A too.
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Convex functions

in Riemannian manifolds

Theorem

If a function f : M → R, where M is a Riemannian manifold, is

convex in a convex set A ⊂ M, then for all a ∈ R the sets

A1 := A ∩ {x ∈ M|f (x) ≤ a}, A2 := A ∩ {x ∈ M|f (x) < a}.

are convex.
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Distance function

in the hyperbolic plane

Let's �x any point x0 ∈ H2 and de�ne the distance function for

it:

f : H2 → R, f (x) = ρ(x , x0), x ∈ H2.

Theorem

The distance function f is convex in the hyperbolic plane H2.
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Distance function

in the hyperbolic plane

It is known, that such a function is convex in any Hadamard

space. In this work we got a direct proof of convexity of f for the
case of the hyperbolic plane. Moreover, here we made sure that

topological and analytical methods often can give more

satisfying answer to similar problems than purely geometrical

ones.
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Distance function

in the hyperbolic plane

We didn't research hyperbolic spaces of older dimensions in this

work, but it is worth highlighting that the same result about

convexity of the distance function is also right for their case,

because they are Hadamard spaces as well. But we will consider

now only the case of the hyperbolic plane to look through the

general idea of the proof.
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Distance function

in the hyperbolic plane

Having used some isometries of the hyperbolic plane, especially

inversion, it was stated that it is su�cient to discover the

function f at the vertical geodesic in the imaginary axis, so that

its lower limit equals to i .
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Distance function

in the hyperbolic plane

Then, let's assume that γ : [0,1] → H2 is a standard

parametrization of the geodesic. If x0 is in the imaginary axis, it

is enough to prove the convexity of the function

h(α) = f (γ(α)) =
∣∣∣∣ln aα

2
q

∣∣∣∣ , α ∈ R,

in [0,1].
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Distance function

in the hyperbolic plane

Otherwise, it is enough to prove the convexity of the function

h(α) = f (γ(α)) = ln

 2

1 −
|aα

2 i − p − iq|
|aα

2 i + p + iq|

− 1

 , α ∈ R

in [0,1], where x0 = p + iq.
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Convexity of N-foci balls

From the obtained result implies the next theorem.

Theorem

All open and closed weighted N-foci balls are geodesically

convex sets in the hyperbolic plane H2.
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