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Beltrami equation

Let C be the complex plane. In the complex notation f = u+ iv and
z= x+ iy, the Beltrami equation in a domain G⊂ C has the form

(1) fz = µ(z)fz,

where µ : G→ C is a measurable function and

fz =
1

2
(fx+ ify), fz =

1

2
(fx− ify)

are formal derivatives of f in z and z, while fx and fy are partial
derivatives of f in the variables x and y, respectively.



Nonlinear Beltrami equation

Let σ : G→ C be a measurable function and m⩾ 0. We consider
the following equation written in the polar coordinates (r,θ) :

(2) fr = σ(reiθ ) |fθ |m fθ ,

where fθ and fr are the partial derivatives of f by θ and r,
respectively. The equations of this type were studied in the works
[1]�[6].



Nonlinear Beltrami equation

Applying the relations between these derivatives and the formal
derivatives

(3) rfr = zfz+ zfz , fθ = i(zfz− zfz) ,

one can rewrite the equation (2) in the Cartesian form:

(4) fz =
z

z

σ̃(z) |zfz− zfz|m−1

σ̃(z) |zfz− zfz|m+1
fz ,

where σ̃(z) = iσ(z)|z|.



Nonlinear Beltrami equation

Under m= 0, the equation (4) reduces to the standard linear
Beltrami equation (1) with the complex coe�cient

µ(z) =
z

z

iσ(z) |z|−1

iσ(z) |z|+1
.

Picking m= 0 and σ =−i/|z| in (4), we arrive at the classical
Cauchy-Riemann system. For m> 0 the equation (4) provides a
partial case of the general nonlinear system of equations (7.33)
given in [7].



Nonlinear Beltrami equation

Next, we consider an equation of another type, namely

(5) fθ = σ(reiθ ) |fr|m fr.

Applying the relations (3), one can rewrite the equation (5) by

(6) fz =
z

z

1+ iσ(z) |z|−m−1|zfz+ zfz|m

1− iσ(z) |z|−m−1|zfz+ zfz|m
fz.

Assuming m= 0, the equation (6) also becomes the standard linear
Beltrami equation (1) with

µ(z) =
z

z

1+ iσ(z)/|z|
1− iσ(z)/|z|

.

Choosing m= 0 and σ = i|z| in (6), we arrive again at the classical
Cauchy-Riemann system. Later on we assume that m> 0.



Regular homeomorphic solutions

A mapping f : G→ C is called regular at a point z0 ∈G, if f has
the total di�erential at this point and its Jacobian Jf = |fz|2−|fz̄|2
does not vanish. A homeomorphism f of Sobolev class W1,1

loc is
called regular, if Jf > 0 a.e. By a regular homeomorphic solution of

the equation (6) we call a regular homeomorphism f : G→ C,
which satis�es (6) a.e. in G.
Later on we use the following notations

Br = {z ∈ C : |z|< r} , B= {z ∈ C : |z|< 1}

and

γr = {z ∈ C : |z|= r} , A(0,r1,r2) = {z ∈ C : r1 < |z|< r2}.

The area of set f(Br) we denote by Sf(r) = |f(Br)|.



p-angular dilatation

Let f : B→ C be a regular homeomorphism of the Sobolev class
W

1,1
loc, and p> 1. By the p-angular dilatation of the mapping f with

respect to the point z0 = 0 we call a quantity

(7) Dp,f(z) =Dp,f(re
iθ ) =

|fθ (reiθ )|p

rpJf(reiθ )
,

where z= reiθ and Jf is the Jacobian of f.
For Dp,f(z) and p> 1, denote

(8) dp,f(r) =

 1

2πr

∫
γr

D
1

p−1
p,f (z) |dz|

p−1

.



Di�erential inequality

The following lemma provides a di�erential inequality for the area
functional Sf(r) = |f(Br)|.

Lemma

Let f : B→ C be a regular homeomorphism of the Sobolev class

W
1,1
loc that possesses the N-property, and p> 1, K> 0. If

(9) dp,f(r)⩽K for a.a. r ∈ (0,1) ,

then

(10) S′f(r)⩾ 2π
2−p
2 K−1 r1−pS

p
2

f (r)

for a.a. r ∈ [0,1).



The area of the disk image

Lemma

Let f : B→ C be a regular homeomorphism of the Sobolev class

W
1,1
loc that possesses the N-property, 1< p< 2 and K> 0. If

dp,f(r)⩽K for a.a. r ∈ (0,1), then for r ∈ [0,1)

(11) |f(Br)|⩾ C(p,K)r2 ,

where C(p,K) = πK
2

p−2 .



Asymptotic behavior of regular homeomorphisms

Lemma

Let f : B→ C be a regular homeomorphism of the Sobolev class

W
1,1
loc that possesses the N-property and normalized by f(0) = 0,

and 1< p< 2, K> 0. If dp,f(r)⩽K for a.a. r ∈ (0,1), then

limsup
z→0

|f(z)|
|z|

⩾K
− 1
2−p .



Asymptotic behavior of regular homeomorphisms

Theorem

Let f : B→ C be a regular homeomorphism of the Sobolev class

W
1,1
loc that possesses the N-property and normalized by f(0) = 0,

and 1< p< 2. Suppose that

κ0 = liminf
ε→0

 1

πε2

∫
Bε

D
1

p−1
p,f (z)dxdy

p−1

.

1) If κ0 ∈ (0,∞), then

limsup
z→0

|f(z)|
|z|

⩾ cp κ
− 1
2−p

0 ,

where cp is a positive constant depending on the parameter p.

2) If κ0 = 0, then

limsup
z→0

|f(z)|
|z|

= ∞ .



Asymptotic behavior of regular homeomorphic solutions

Theorem

Let f : B→ C be a regular homeomorphic solution of the equation

(6) which belongs to Sobolev class W1,2
loc, and normalized by

f(0) = 0. Assume that C> 0 and the coe�cient σ : B→ C satis�es

the following condition

(12)
∫
γr

|σ(z)|m+2

(Imσ(z))m+1
|dz|⩽ Cr2

for a.a. r ∈ (0,1). Then

(13) limsup
z→0

|f(z)|
|z|

⩾

(
2π

C

) 1
m

.



Asymptotic behavior of regular homeomorphic solutions

Corollary

Let f : B→ C be a regular homeomorphic solution of the equation

(6) which belongs to Sobolev class W1,2
loc, and normalized by

f(0) = 0 and K> 0. Assume that the coe�cient σ : B→ C satis�es

the following condition

(14)
|σ(z)|m+2

(Imσ(z))m+1
⩽K |z|

for a.a. z ∈ B. Then

(15) limsup
z→0

|f(z)|
|z|

⩾K− 1
m .



Asymptotic behavior of regular homeomorphic solutions

Example

Fix k> 0 and consider the equation

(16) fθ =
i

km
r|fr|m fr

in the unit disk B. Let f = kreiθ . Obviously, the mapping f belongs
to the Sobolev class W1,2(B). The partial derivatives of f with
respect to θ and r are fθ = kireiθ , fr = keiθ and
Jf(re

iθ ) = 1
r
Im

(
fr fθ

)
= k2 > 0 .

Now we show that the mapping f = kreiθ is a solution of equation
(16). Clearly, σ = fθ

|fr|mfr
= i

km
r . Thus, (12) holds, since∫

γr

|σ(z)|m+2

(Imσ(z))m+1 |dz|= Cr2 where C= 2π

km
.

On the other hand, lim
z→0

|f(z)|
|z| = k .



Asymptotic behavior of regular homeomorphic solutions

Theorem

Let f : B→ C be a regular homeomorphic solution of the equation

(6) which belongs to Sobolev class W1,2
loc, and normalized by

f(0) = 0. Suppose that

σ0 = liminf
ε→0

1

πε2

∫
Bε

|σ(z)|m+2

|z|(Imσ(z))m+1
dxdy.

1) If σ0 ∈ (0,∞), then

limsup
z→0

|f(z)|
|z|

⩾ cm σ
− 1
m

0 ,

where cm is a positive constant depending on the parameter m.
2) If σ0 = 0, then

limsup
z→0

|f(z)|
|z|

= ∞.



Asymptotic behavior of regular homeomorphic solutions

Example

Let k> 0 and α ∈ (1,m+1). Consider the equation

(17) fθ = ikrα |fr|mfr

in the unit disk B. The mapping f = k−
1
m β

m+1
m r

m+1−α

m eiθ ,
β = m

m+1−α
, belongs to the Sobolev class W1,2

loc(B). Its partial
derivatives with respect to r and θ are fθ = ik−

1
m β

m+1
m r

m+1−α

m eiθ ,
fr = k−

1
m β

1
m r

1−α

m eiθ .



Asymptotic behavior of regular homeomorphic solutions

Example

It is easy to see that the mapping f = k−
1
m β

m+1
m r

m+1−α

m eiθ is a
regular homeomorphic solution of the equation (17). Clearly,
σ = fθ

|fr|mfr
= ikrα . The condition σ0 = 0 in previous theorem is

ful�lled, since

lim
ε→0

1

πε2

∫
Bε

|σ(z)|m+2

|z|(Imσ(z))m+1
dxdy = 0.

By a direct calculation, |f(z)|/|z| → ∞ as z→ 0.
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