On the asymptotic behavior of solutions to nonlinear Beltrami equation

Igor Petkov, Ruslan Salimov, Mariia Stefanchuk

May 30, 2024

Beltrami equation

Let $\mathbb C$ be the complex plane. In the complex notation f=u+iv and z=x+iy, the *Beltrami equation* in a domain $G\subset \mathbb C$ has the form

$$f_{\overline{z}} = \mu(z)f_z,$$

where $\mu\colon \mathrm{G} o\mathbb{C}$ is a measurable function and

$$f_{\overline{z}} = \frac{1}{2}(f_x + if_y), \qquad f_z = \frac{1}{2}(f_x - if_y)$$

are formal derivatives of f in \overline{z} and z, while f_x and f_y are partial derivatives of f in the variables x and y, respectively.

Let $\sigma \colon G \to \mathbb{C}$ be a measurable function and $m \geqslant 0$. We consider the following equation written in the polar coordinates (r, θ) :

(2)
$$f_{r} = \sigma(re^{i\theta}) |f_{\theta}|^{m} f_{\theta},$$

where f_{θ} and f_r are the partial derivatives of f by θ and r, respectively. The equations of this type were studied in the works [1]–[6].

Applying the relations between these derivatives and the formal derivatives

(3)
$$\operatorname{rf}_{\mathbf{r}} = \operatorname{zf}_{\mathbf{z}} + \overline{\operatorname{z}} \operatorname{f}_{\overline{\mathbf{z}}}, \qquad \operatorname{f}_{\boldsymbol{\theta}} = \operatorname{i}(\operatorname{zf}_{\mathbf{z}} - \overline{\operatorname{z}} \operatorname{f}_{\overline{\mathbf{z}}}),$$

one can rewrite the equation (2) in the Cartesian form:

(4)
$$f_{\overline{z}} = \frac{z}{\overline{z}} \frac{\widetilde{\sigma}(z) |zf_z - \overline{z}f_{\overline{z}}|^m - 1}{\widetilde{\sigma}(z) |zf_z - \overline{z}f_{\overline{z}}|^m + 1} f_z,$$

where $\widetilde{\boldsymbol{\sigma}}(z)=i\boldsymbol{\sigma}(z)|z|.$

Under m=0, the equation (4) reduces to the standard linear Beltrami equation (1) with the complex coefficient

$$\mu(z) = \frac{z}{\overline{z}} \frac{i\sigma(z)|z|-1}{i\sigma(z)|z|+1}.$$

Picking m=0 and $\sigma=-i/|z|$ in (4), we arrive at the classical Cauchy-Riemann system. For m>0 the equation (4) provides a partial case of the general nonlinear system of equations (7.33) given in [7].

Next, we consider an equation of another type, namely

(5)
$$f_{\theta} = \sigma(re^{i\theta}) |f_r|^m f_r.$$

Applying the relations (3), one can rewrite the equation (5) by

(6)
$$f_{\overline{z}} = \frac{z}{\overline{z}} \frac{1 + i\sigma(z)|z|^{-m-1}|zf_z + \overline{z}f_{\overline{z}}|^m}{1 - i\sigma(z)|z|^{-m-1}|zf_z + \overline{z}f_{\overline{z}}|^m} f_z.$$

Assuming m=0, the equation (6) also becomes the standard linear Beltrami equation (1) with

$$\mu(z) = \frac{z}{\overline{z}} \frac{1 + i\sigma(z)/|z|}{1 - i\sigma(z)/|z|}.$$

Choosing m=0 and $\sigma=i|z|$ in (6), we arrive again at the classical Cauchy-Riemann system. Later on we assume that m>0.

Regular homeomorphic solutions

A mapping $f\colon G\to\mathbb{C}$ is called regular at a point $z_0\in G,$ if f has the total differential at this point and its Jacobian $J_f=|f_z|^2-|f_{\bar{z}}|^2$ does not vanish. A homeomorphism f of Sobolev class $W^{1,1}_{loc}$ is called regular, if $J_f>0$ a.e. By a regular homeomorphic solution of the equation (6) we call a regular homeomorphism $f\colon G\to\mathbb{C},$ which satisfies (6) a.e. in G.

Later on we use the following notations

$$B_r = \left\{z \in \mathbb{C} : |z| < r \right\}, \quad \mathbb{B} = \left\{z \in \mathbb{C} : |z| < 1 \right\}$$

and

$$\gamma_r = \left\{z \in \mathbb{C} : |z| = r \right\}, \quad \mathbb{A}(0, r_1, r_2) = \left\{z \in \mathbb{C} : r_1 < |z| < r_2 \right\}.$$

The area of set $f(B_r)$ we denote by $S_f(r) = |f(B_r)|$.

p-angular dilatation

Let $f:\mathbb{B}\to\mathbb{C}$ be a regular homeomorphism of the Sobolev class $W^{1,1}_{loc}$, and p>1. By the p-angular dilatation of the mapping f with respect to the point $z_0=0$ we call a quantity

(7)
$$D_{p,f}(z) = D_{p,f}(re^{i\theta}) = \frac{|f_{\theta}(re^{i\theta})|^p}{r^p J_f(re^{i\theta})},$$

where $z=re^{i\theta}$ and J_f is the Jacobian of f. For $D_{p,f}(z)$ and p>1, denote

(8)
$$d_{p,f}(r) = \left(\frac{1}{2\pi r} \int_{\gamma_r} D_{p,f}^{\frac{1}{p-1}}(z) |dz|\right)^{p-1}.$$

Differential inequality

The following lemma provides a differential inequality for the area functional $S_f(r) = |f(B_r)|$.

Lemma

Let $f:\mathbb{B}\to\mathbb{C}$ be a regular homeomorphism of the Sobolev class $W^{1,1}_{\mathrm{loc}}$ that possesses the N-property, and p>1, K>0. If

$$d_{p,f}(r)\leqslant K\quad \text{for a.a.}\quad r\in (0,1)\,,$$

then

(10)
$$S'_{f}(r) \ge 2\pi^{\frac{2-p}{2}} K^{-1} r^{1-p} S_{f}^{\frac{p}{2}}(r)$$

for a.a. $r \in [0,1)$.

The area of the disk image

Lemma

Let $f: \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $W^{1,1}_{loc}$ that possesses the N-property, 1 and <math>K > 0. If $d_{p,f}(r) \leqslant K$ for a.a. $r \in (0,1)$, then for $r \in [0,1)$

(11)
$$|f(B_r)| \ge C(p, K) r^2$$
,

where $C(p,K) = \pi K^{\frac{2}{p-2}}$.

Asymptotic behavior of regular homeomorphisms

Lemma

Let $f:\mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $W^{1,1}_{\mathrm{loc}}$ that possesses the N-property and normalized by f(0)=0, and 1 , <math>K > 0. If $d_{p,f}(r) \leqslant K$ for a.a. $r \in (0,1)$, then

$$\underset{z\to 0}{\text{lim}} \sup \, \frac{|f(z)|}{|z|} \geqslant K^{-\frac{1}{2-p}} \, .$$

Asymptotic behavior of regular homeomorphisms

Theorem

Let $f: \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $\mathrm{W}_{\mathrm{loc}}^{1,1}$ that possesses the N-property and normalized by $\mathrm{f}(0)=0$, and 1 . Suppose that

$$\kappa_0 = \liminf_{arepsilon o 0} \left(rac{1}{\pi arepsilon^2} \int\limits_{\mathrm{B}_arepsilon} \mathrm{D}_{\mathrm{p,f}}^{rac{1}{p-1}}(\mathrm{z}) \, \mathrm{dx} \, \mathrm{dy}
ight)^{\mathrm{p}-1} \, .$$

1) If $\kappa_0 \in (0, \infty)$, then

$$\limsup_{z \to 0} \frac{|f(z)|}{|z|} \geqslant c_p \, \kappa_0^{-\frac{1}{2-p}},$$

where c_p is a positive constant depending on the parameter p.

2) If $\kappa_0 = 0$, then

$$\limsup_{z \to 0} \frac{|f(z)|}{|z|} = \infty.$$

Theorem

Let $f:\mathbb{B}\to\mathbb{C}$ be a regular homeomorphic solution of the equation (6) which belongs to Sobolev class $W^{1,2}_{loc}$, and normalized by f(0)=0. Assume that C>0 and the coefficient $\sigma:\mathbb{B}\to\mathbb{C}$ satisfies the following condition

(12)
$$\int\limits_{\gamma_r} \frac{|\sigma(z)|^{m+2}}{(\operatorname{Im} \sigma(z))^{m+1}} |\mathrm{d}z| \leqslant C \, r^2$$

for a.a. $r \in (0,1)$. Then

(13)
$$\limsup_{z\to 0} \frac{|f(z)|}{|z|} \geqslant \left(\frac{2\pi}{C}\right)^{\frac{1}{m}}.$$

Corollary

Let $f:\mathbb{B}\to\mathbb{C}$ be a regular homeomorphic solution of the equation (6) which belongs to Sobolev class $W^{1,2}_{loc}$, and normalized by f(0)=0 and K>0. Assume that the coefficient $\sigma:\mathbb{B}\to\mathbb{C}$ satisfies the following condition

(14)
$$\frac{|\sigma(z)|^{m+2}}{(\operatorname{Im} \sigma(z))^{m+1}} \leqslant K|z|$$

for a.a. $z \in \mathbb{B}$. Then

(15)
$$\limsup_{z \to 0} \frac{|f(z)|}{|z|} \geqslant K^{-\frac{1}{m}}.$$

Example

Fix k > 0 and consider the equation

(16)
$$f_{\theta} = \frac{i}{k^m} r |f_r|^m f_r$$

in the unit disk \mathbb{B} . Let $f=kre^{i\theta}$. Obviously, the mapping f belongs to the Sobolev class $W^{1,2}(\mathbb{B})$. The partial derivatives of f with respect to θ and r are $f_{\theta}=kire^{i\theta}, f_{r}=ke^{i\theta}$ and $J_{f}(re^{i\theta})=\frac{1}{r}\operatorname{Im}\left(\overline{f_{r}}f_{\theta}\right)=k^{2}>0$. Now we show that the mapping $f=kre^{i\theta}$ is a solution of equation

Now we show that the mapping $f = K r e^{i\sigma}$ is a solution of equation (16). Clearly, $\sigma = \frac{f_{\theta}}{|f_{\rm r}|^m f_{\rm r}} = \frac{i}{k^m} r$. Thus, (12) holds, since

$$\int\limits_{\mathcal{K}} \frac{|\sigma(z)|^{m+2}}{(\operatorname{Im} \sigma(z))^{m+1}} \left| dz \right| = C \, r^2 \ \text{where} \ C = \frac{2\pi}{k^m}.$$

On the other hand, $\lim_{z \to 0} \frac{|f(z)|}{|z|} = k$.

Theorem

Let $f\colon \mathbb{B}\to \mathbb{C}$ be a regular homeomorphic solution of the equation (6) which belongs to Sobolev class $W^{1,2}_{\mathrm{loc}},$ and normalized by f(0)=0. Suppose that

$$\sigma_0 = \liminf_{oldsymbol{arepsilon} ext{o} = 0} rac{1}{\pi oldsymbol{arepsilon}^2} \int\limits_{\mathrm{B}_{oldsymbol{arepsilon}}} rac{|\sigma(\mathrm{z})|^{\mathrm{m}+2}}{|\mathrm{z}| \left(\mathrm{Im}\,\sigma(\mathrm{z})
ight)^{\mathrm{m}+1}} \,\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{y}.$$

1) If $\sigma_0 \in (0, \infty)$, then

$$\limsup_{z\to 0}\frac{|f(z)|}{|z|}\geqslant c_m\, \sigma_0^{-\frac{1}{m}},$$

where $\varepsilon_{\rm m}$ is a positive constant depending on the parameter ${\rm m}.$

2) If $\sigma_0 = 0$, then

$$\limsup_{z \to 0} \frac{|f(z)|}{|z|} = \infty.$$

Example

Let k > 0 and $\alpha \in (1, m+1)$. Consider the equation

(17)
$$f_{\theta} = ikr^{\alpha}|f_{r}|^{m}f_{r}$$

in the unit disk $\mathbb B.$ The mapping $f=k^{-\frac{1}{m}}\beta^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}}e^{i\theta},$ $\beta=\frac{m}{m+1-\alpha}\text{, belongs to the Sobolev class }W^{1,2}_{loc}(\mathbb B)\text{. Its partial derivatives with respect to }r\text{ and }\theta\text{ are }f_{\theta}=ik^{-\frac{1}{m}}\beta^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}}e^{i\theta},$ $f_{r}=k^{-\frac{1}{m}}\beta^{\frac{1}{m}}r^{\frac{1-\alpha}{m}}e^{i\theta}.$

Example

It is easy to see that the mapping $f=k^{-\frac{1}{m}}\pmb{\beta}^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}}e^{i\pmb{\theta}}$ is a regular homeomorphic solution of the equation (17). Clearly, $\pmb{\sigma}=\frac{f_{\pmb{\theta}}}{|f_r|^mf_r}=ikr^\alpha$. The condition $\pmb{\sigma}_0=0$ in previous theorem is fulfilled, since

$$\lim_{\varepsilon \to 0} \frac{1}{\pi \varepsilon^2} \int_{B_{\varepsilon}} \frac{|\sigma(z)|^{m+2}}{|z| \left(\operatorname{Im} \sigma(z)\right)^{m+1}} dx dy = 0.$$

By a direct calculation, $|f(z)|/|z| \to \infty$ as $z \to 0$.

References

- 1. A. Golberg, R. Salimov and M. Stefanchuk, *Asymptotic dilation of regular homeomorphisms*. Complex Anal. Oper. Theory, **13** (2019), no. 6, 2813–2827.
- 2. R. R. Salimov and M. V. Stefanchuk, *On the local properties of solutions of the nonlinear Beltrami equation*. J. Math. Sci., **248** (2020), 203–216.
- 3. A. Golberg and R. Salimov, *Nonlinear Beltrami equation*. Complex Var. Elliptic Equ., **65** (2020), no. 1, 6–21.
- 4. R. R. Salimov and M. V. Stefanchuk, *Logarithmic asymptotics of the nonlinear Cauchy-Riemann-Beltrami equation*. Ukr. Math. J., **73** (2021), 463–478.
- 5. R. R. Salimov, M. V. Stefanchuk. *Nonlinear Beltrami equation and asymptotics of its solution*. J. Math. Sci., **264** (2022), no. 4, 441–454.
- 6. R. Salimov, M. Stefanchuk. Finite Lipschitzness of regular solutions to nonlinear Beltrami equation. Complex Variables and Elliptic Equations, **69** (2024), no. 6, 913–923.

References

- 7. K. Astala, T. Iwaniec and G. Martin, *Elliptic partial differential equations and quasiconformal mappings in the plane*. Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009.
- 8. I. Petkov, R. Salimov, M. Stefanchuk. *Nonlinear Beltrami equation: lower estimates of Schwarz Lemma's type.* Canadian Mathematical Bulletin (2023).

https://doi.org/10.4153/S0008439523000942