On the asymptotic behavior of solutions to nonlinear Beltrami equation

Igor Petkov, Ruslan Salimov, Mariia Stefanchuk

May 30, 2024

Igor Petkov, Ruslan Salimov, Mariia Stefanchuk **On the asymptotic behavior of** s<u>olutions to nonlinear Beltrar</u>

A + + = + + = +

 OQ

Let C be the complex plane. In the complex notation $f = u + iv$ and $z = x + iy$, the *Beltrami equation* in a domain $G \subset \mathbb{C}$ has the form

$$
\mathbf{f}_{\overline{z}} = \mu(z) \mathbf{f}_z,
$$

where $\mu: G \to \mathbb{C}$ is a measurable function and

$$
f_{\overline{z}} = \frac{1}{2}(f_x + if_y), \qquad f_z = \frac{1}{2}(f_x - if_y)
$$

K ロ K K @ K K X 할 K K 할 X (할 X) 할

 299

are formal derivatives of f in \overline{z} and z, while f_x and f_y are partial derivatives of f in the variables x and y , respectively.

Let $\sigma\colon G\to\mathbb{C}$ be a measurable function and $m\geqslant 0.$ We consider the following equation written in the polar coordinates (r,θ) :

(2)
$$
f_r = \sigma(r e^{i\theta}) |f_\theta|^m f_\theta,
$$

where f_{θ} and f_r are the partial derivatives of f by θ and r, respectively. The equations of this type were studied in the works $[1]$ - $[6]$.

K ロ ▶ 《 *団* ▶ 《 글 》 《 글 》 《 글 》

 299

Applying the relations between these derivatives and the formal derivatives

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. ①

(3)
$$
rf_r = zf_z + \overline{z}f_{\overline{z}}, \qquad f_{\theta} = i(zf_z - \overline{z}f_{\overline{z}}),
$$

one can rewrite the equation [\(2\)](#page-2-0) in the Cartesian form:

(4)
$$
f_{\overline{z}} = \frac{z}{\overline{z}} \frac{\widetilde{\sigma}(z) |z f_z - \overline{z} f_{\overline{z}}|^m - 1}{\widetilde{\sigma}(z) |z f_z - \overline{z} f_{\overline{z}}|^m + 1} f_z,
$$

where $\widetilde{\sigma}(z) = i \sigma(z) |z|$.

Under $m = 0$, the equation [\(4\)](#page-3-0) reduces to the standard linear Beltrami equation (1) with the complex coefficient

$$
\mu(z) = \frac{z}{\overline{z}} \frac{i\sigma(z)|z|-1}{i\sigma(z)|z|+1}.
$$

Picking $m = 0$ and $\sigma = -i/|z|$ in [\(4\)](#page-3-0), we arrive at the classical Cauchy-Riemann system. For $m > 0$ the equation [\(4\)](#page-3-0) provides a partial case of the general nonlinear system of equations (7.33) given in [7].

メロト メ御 トメ 君 トメ 君 トッ 君 し

 299

Next, we consider an equation of another type, namely

(5)
$$
f_{\theta} = \sigma(re^{i\theta}) |f_r|^m f_r.
$$

Applying the relations [\(3\)](#page-3-1), one can rewrite the equation [\(5\)](#page-5-0) by

(6)
$$
f_{\overline{z}} = \frac{z}{\overline{z}} \frac{1 + i\sigma(z) |z|^{-m-1} |z f_z + \overline{z} f_{\overline{z}}|^m}{1 - i\sigma(z) |z|^{-m-1} |z f_z + \overline{z} f_{\overline{z}}|^m} f_z.
$$

Assuming $m = 0$, the equation [\(6\)](#page-5-1) also becomes the standard linear Beltrami equation [\(1\)](#page-1-0) with

$$
\mu(z) = \frac{z}{\overline{z}} \frac{1 + i\sigma(z)/|z|}{1 - i\sigma(z)/|z|}.
$$

Choosing $m = 0$ and $\sigma = i|z|$ in [\(6\)](#page-5-1), we arrive again at the classical Cauchy-Riemann system. Later on we assume that $m > 0$.

A mapping $f: G \to \mathbb{C}$ is called *regular at a point* $z_0 \in G$, if f has the total differential at this point and its Jacobian $\mathrm{J}_\mathrm{f} = |\mathrm{f}_{\mathrm{z}}|^2 - |\mathrm{f}_{\mathrm{\bar{z}}}|^2$ does not vanish. A homeomorphism $\rm f$ of Sobolev class $\rm W^{1,1}_{loc}$ is called regular, if $J_f > 0$ a.e. By a regular homeomorphic solution of the equation [\(6\)](#page-5-1) we call a regular homeomorphism $f: G \to \mathbb{C}$, which satisfies (6) a.e. in G . Later on we use the following notations

$$
B_r=\left\{z\in\mathbb{C}:|z|< r\right\},\quad \mathbb{B}=\left\{z\in\mathbb{C}:|z|< 1\right\}
$$

and

$$
\gamma_r = \{ z \in \mathbb{C} : |z| = r \}, \quad \mathbb{A}(0, r_1, r_2) = \{ z \in \mathbb{C} : r_1 < |z| < r_2 \}.
$$

K ロ K K @ K K X 할 K K 할 X (할 X) 할

 298

The area of set $f(B_r)$ we denote by $S_f(r) = |f(B_r)|$.

p-angular dilatation

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $\rm W^{1,1}_{loc}$, and $\rm p > 1$. By the $\rm p$ -*angular dilatation* of the mapping $\rm f$ with respect to the point $z_0 = 0$ we call a quantity

.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

(7)
$$
D_{p,f}(z) = D_{p,f}(re^{i\theta}) = \frac{|f_{\theta}(re^{i\theta})|^p}{r^p J_f(re^{i\theta})},
$$

where $z = re^{i\theta}$ and J_f is the Jacobian of f . For $D_{\text{nf}}(z)$ and $p > 1$, denote

(8)
$$
d_{p,f}(r) = \left(\frac{1}{2\pi r} \int_{\gamma_r} D_{p,f}^{\frac{1}{p-1}}(z) |dz|\right)^{p-1}
$$

The following lemma provides a differential inequality for the area functional $S_f(r) = |f(B_r)|$.

Lemma

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $\rm W^{1,1}_{loc}$ that possesses the N-property, and $\rm p > 1,~K > 0.$ If

《 ロ 》 《 御 》 《 君 》 《 君 》 《 君

 $2Q$

(9)
$$
d_{p,f}(r) \leqslant K \quad \text{for a.a.} \quad r \in (0,1),
$$

then

(10)
$$
S'_f(r) \geqslant 2\pi^{\frac{2-p}{2}} K^{-1} r^{1-p} S_f^{\frac{p}{2}}(r)
$$

for a.a. $r \in [0,1)$.

Lemma

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $\rm W^{1,1}_{loc}$ that possesses the N-property, $1 < p < 2$ and $\rm K > 0$. If $d_{p,f}(r) \leqslant K$ for a.a. $r \in (0,1)$, then for $r \in [0,1)$

K ロ X K @ X K R X X R X X R X

 $2Q$

(11)
$$
|f(B_r)| \geqslant C(p,K)r^2,
$$

where $C(p, K) = \pi K^{\frac{2}{p-2}}$.

Lemma

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $\rm W^{1,1}_{loc}$ that possesses the N-property and normalized by $\rm f(0)=0$, and $1 < p < 2$, $K > 0$. If $d_{p,f}(r) \leq K$ for a.a. $r \in (0,1)$, then

$$
\limsup_{z\to 0}\frac{|f(z)|}{|z|}\geqslant K^{-\frac{1}{2-p}}\,.
$$

K ロ ▶ (K @) X X 글 X (K 글) / [글

 $2Q$

Asymptotic behavior of regular homeomorphisms

Theorem

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphism of the Sobolev class $\rm W^{1,1}_{loc}$ that possesses the N-property and normalized by $\rm f(0)=0$, and $1 < p < 2$. Suppose that

$$
\kappa_0=\underset{\epsilon\rightarrow 0}{\text{liminf}}\left(\frac{1}{\pi\epsilon^2}\int\limits_{B_\epsilon}D_{p,f}^{\frac{1}{p-1}}(z)\,\mathrm{d} x\,\mathrm{d} y\right)^{p-1}
$$

1) If $\kappa_0 \in (0,\infty)$, then

$$
\limsup_{z \to 0} \frac{|f(z)|}{|z|} \geqslant c_p \, \kappa_0^{-\frac{1}{2-p}},
$$

where c_p is a positive constant depending on the parameter p . 2) If $\kappa_0 = 0$, then

$$
\limsup_{z \to 0} \frac{|f(z)|}{|z|} = \infty.
$$

.

Theorem

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphic solution of the equation [\(6\)](#page-5-1) which belongs to Sobolev class $\mathrm{W}^{1,2}_{\mathrm{loc}}$, and normalized by $f(0) = 0$. Assume that $C > 0$ and the coefficient $\sigma : \mathbb{B} \to \mathbb{C}$ satisfies the following condition

K ロ ▶ (K @) K (할) (K 할)

つくい

(12)
$$
\int\limits_{\gamma_{\rm r}} \frac{|\sigma(z)|^{\rm m+2}}{(\mathrm{Im}\,\sigma(z))^{\rm m+1}} |\mathrm{d}z| \leqslant \mathrm{Cr}^2
$$

for a.a. $r \in (0,1)$. Then

(13)
$$
\limsup_{z \to 0} \frac{|f(z)|}{|z|} \geqslant \left(\frac{2\pi}{C}\right)^{\frac{1}{m}}.
$$

Corollary

Let $f : \mathbb{B} \to \mathbb{C}$ be a regular homeomorphic solution of the equation [\(6\)](#page-5-1) which belongs to Sobolev class $\mathrm{W}^{1,2}_{\mathrm{loc}}$, and normalized by $f(0) = 0$ and $K > 0$. Assume that the coefficient $\sigma : \mathbb{B} \to \mathbb{C}$ satisfies the following condition

K ロ ▶ | K 御 ▶ | K 君 ▶ | K 君 ▶ | L

つくい

(14)
$$
\frac{|\sigma(z)|^{m+2}}{(\operatorname{Im} \sigma(z))^{m+1}} \leqslant K |z|
$$

for a.a. $z \in \mathbb{B}$. Then

(15)
$$
\limsup_{z \to 0} \frac{|f(z)|}{|z|} \geqslant K^{-\frac{1}{m}}.
$$

Example

Fix $k > 0$ and consider the equation

(16)
$$
f_{\theta} = \frac{i}{k^m} r |f_r|^m f_r
$$

in the unit disk $\mathbb B.$ Let $\mathrm f=\mathrm{kre}^{\mathrm i\theta}.$ Obviously, the mapping $\mathrm f$ belongs to the Sobolev class $\mathrm{W}^{1,2}(\mathbb{B}).$ The partial derivatives of $\mathrm f$ with respect to $\boldsymbol{\theta}$ and \mathbf{r} are $\mathbf{f}_{\boldsymbol{\theta}} = \mathrm{kir}^{\mathrm{i} \boldsymbol{\theta}}, \mathbf{f}_{\mathbf{r}} = \mathrm{ke}^{\mathrm{i} \boldsymbol{\theta}}$ and $J_f(re^{i\theta}) = \frac{1}{r} \text{Im}(\bar{f}_r f_{\theta}) = k^2 > 0.$ Now we show that the mapping $f = k r e^{i\theta}$ is a solution of equation [\(16\)](#page-14-0). Clearly, $\sigma=\frac{f_\theta}{|f_r|^m f_r}=\frac{i}{k^m}$ r. Thus, [\(12\)](#page-12-0) holds, since R $\gamma_{\rm r}$ $\frac{|\sigma(\mathrm{z})|^{ \mathrm{m}+2}}{(\mathrm{Im}\,\sigma(\mathrm{z}))^{ \mathrm{m}+1}}\left|\mathrm{d}\mathrm{z}\right|=\mathrm{C}\,\mathrm{r}^{2}$ where $\mathrm{C}=\frac{2\pi}{\mathrm{k}^{\mathrm{m}}}.$ On the other hand, $\displaystyle \lim_{z \to 0}$ $\frac{|f(z)|}{|z|} = k.$

Asymptotic behavior of regular homeomorphic solutions

Theorem

Let $f: \mathbb{B} \to \mathbb{C}$ be a regular homeomorphic solution of the equation [\(6\)](#page-5-1) which belongs to Sobolev class $\mathrm{W}^{1,2}_{\mathrm{loc}},$ and normalized by $f(0) = 0$. Suppose that

$$
\sigma_0 = \liminf_{\epsilon \to 0} \frac{1}{\pi \epsilon^2} \int\limits_{B_{\epsilon}} \frac{|\sigma(z)|^{m+2}}{|z| (\operatorname{Im} \sigma(z))^{m+1}} \, dx dy.
$$

1) If
$$
\sigma_0 \in (0, \infty)
$$
, then

$$
\limsup_{z\to 0}\frac{|f(z)|}{|z|}\geqslant c_m\,\sigma_0^{-\frac{1}{m}},
$$

where c_m is a positive constant depending on the parameter m . 2) If $\sigma_0 = 0$, then

$$
\limsup_{z \to 0} \frac{|f(z)|}{|z|} = \infty.
$$

Example

Let $k > 0$ and $\alpha \in (1, m + 1)$. Consider the equation

(17)
$$
f_{\theta} = i k r^{\alpha} |f_r|^m f_r
$$

in the unit disk $\mathbb B.$ The mapping $f=k^{-\frac{1}{m}}\beta^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}}\mathrm e^{\mathrm i\theta},$ $\beta = \frac{\text{m}}{\text{m} + 1 - \alpha}$, belongs to the Sobolev class $\text{W}^{1,2}_{\text{loc}}(\mathbb{B})$. Its partial derivatives with respect to $\rm r$ and θ are $\rm f_{\theta} = \rm i k^{-\frac{1}{\rm m}} \beta^{\frac{m+1}{\rm m}} \rm r^{\frac{m+1-\alpha}{\rm m}} \rm e^{i \theta}$, $f_r = k^{-\frac{1}{m}} \beta^{\frac{1}{m}} r^{\frac{1-\alpha}{m}} e^{i\theta}.$

K ロ K K @ K K X B K K B K C B

 $2Q$

Example

It is easy to see that the mapping $f=k^{-\frac{1}{m}}\beta^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}}{\rm e}^{{\rm i}\theta}$ is a regular homeomorphic solution of the equation [\(17\)](#page-16-0). Clearly, $\bm{\sigma} = \frac{\mathrm{f}_{\bm{\theta}}}{|\mathrm{f}_{\mathrm{r}}|^{\mathrm{m}}\mathrm{f}_{\mathrm{r}}}= \mathrm{i} \mathrm{kr}^{\bm{\alpha}}.$ The condition $\bm{\sigma}_0 = 0$ in previous theorem is fulfilled, since

$$
\lim_{\varepsilon \to 0} \frac{1}{\pi \varepsilon^2} \int\limits_{\mathrm{B}_{\varepsilon}} \frac{|\sigma(z)|^{m+2}}{|z| (\mathrm{Im} \, \sigma(z))^{m+1}} \,\mathrm{d} x \mathrm{d} y = 0.
$$

K ロ ▶ (K @) X X 글 X (K 글) / [글

By a direct calculation, $|f(z)|/|z| \to \infty$ as $z \to 0$.

References

1. A. Golberg, R. Salimov and M. Stefanchuk, Asymptotic dilation of regular homeomorphisms. Complex Anal. Oper. Theory, 13 (2019) , no. 6, 2813-2827.

2. R. R. Salimov and M. V. Stefanchuk, On the local properties of solutions of the nonlinear Beltrami equation. J. Math. Sci., 248 (2020) , 203-216.

3. A. Golberg and R. Salimov, Nonlinear Beltrami equation.

Complex Var. Elliptic Equ., 65 (2020), no. 1, 6-21.

4. R. R. Salimov and M. V. Stefanchuk, Logarithmic asymptotics of the nonlinear Cauchy-Riemann-Beltrami equation. Ukr. Math. J., 73 (2021), 463-478.

5. R. R. Salimov, M. V. Stefanchuk. Nonlinear Beltrami equation and asymptotics of its solution. J. Math. Sci., 264 (2022), no. 4, 441-454.

6. R. Salimov, M. Stefanchuk. Finite Lipschitzness of regular solutions to nonlinear Beltrami equation. Complex Variables and Elliptic Equations, 69 (2024), no. 6, 913-923.

7. K. Astala, T. Iwaniec and G. Martin, *Elliptic partial differential* equations and quasiconformal mappings in the plane. Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009.

K ロ K K @ K K X 할 K K 할 X (할 X) 할

 298

8. I. Petkov, R. Salimov, M. Stefanchuk. Nonlinear Beltrami equation: lower estimates of Schwarz Lemma's type. Canadian Mathematical Bulletin (2023).

https://doi.org/10.4153/S0008439523000942