On the Brody hyperbolicity

Abdessami Jalled

(150 Pl. du Torrent, 38400 Saint-Martin-d'Hères, Office 178) *E-mail:* Abdessami.jalled@grenoble-inp.fr

Definition 1.

Let $H_1, ..., H_m, m \ge 2n$, be a configuration of 2n hyperplanes in general position of $\mathbb{C}P^n$. We call diagonal, the line passing through the two points $\cap_{i \in I} H_i$ and $\cap_{j \in J} H_j$, where |I| = |J| = n and $I \cap J = \emptyset$. Here |I| denotes the cardinal of I.

Theorem 2.

Let $H_1, ..., H_{2n}$ be (2n) projective hyperplanes in general position in $\mathbb{C}P^n$. Then there are $\frac{1}{2}C_{2n}^n$ diagonals $\Delta_1, ..., \Delta_{\frac{1}{2}C_{2n}^n}$ such that for any non constant holomorphic curve $f : \mathbb{C} \longrightarrow \mathbb{C}P^n \setminus \bigcup_{i=1}^{2n} H_i$, there exists $k_f \in \{1, ..., \frac{1}{2}C_{2n}^n\}$ such that $f(\mathbb{C}) \subset \Delta_{k_f}$.

Corollary 3. (This is how we prove the Green Theorem). Any holomorphic curve that lies in the complement of 2n + 1 hyperplanes in general position in $\mathbb{C}P^n$, is constant.

Theorem 4. (E. Borel)

Let $H = \bigcup_{i=1}^{4} H_i$ a collection of complex projective lines in general position in $\mathbb{C}P^2$. Then any non constant map $f : \mathbb{C} \to \mathbb{C}P^2 \setminus H$, lies in one of the diagonales $(\Delta_i)_{i=1,2,3}$. Where Δ_i are the projective lines passing each through a double points of H.

Theorem 5.

Let L_1, L_2, L_3, L_4 and L_5 complex hyperplanes in general position in \mathbb{C}^3 , then for every holomorphic curve $G : \mathbb{C} \to \mathbb{C}^3$ such that $G(\mathbb{C}) \cap (\bigcup_{i=1}^5 L_i) = \emptyset$, there exists a complex line L in \mathbb{C}^3 such that $G(\mathbb{C}) \subset L$. Moreover, the complementary of five complex lines in \mathbb{C}^3 is not Brody hyperbolic. (This result is also true in higher dimension)

Remark: The projection of G into the complex projective space $\mathbb{C}P^2$ is constant.

Definition 6. For $n \ge 3$ and $\mathcal{L} = (L_1, ..., L_n)$ a family of real subspaces of \mathbb{R}^6 of real codimension 2. Then we say that \mathcal{L} is in general position if for every 3-tuple (i, j, l) of distinct integers $i, j, l \in \{1, ..., n\}$,

$$Span_{\mathbb{R}}(L_i^{\perp}, L_i^{\perp}, L_l^{\perp}) = \mathbb{R}^6$$

We note that if L is a real subspace in \mathbb{R}^6 , then L^{\perp} denotes the orthogonal complement of L.

Theorem 7. Let L_1, L_2, L_3, L_4 be four complex lines in \mathbb{C}^3 . Then there exists a real subspace L of \mathbb{R}^6 , of real dimension four, such that (L, L_i, L_j) are in general position for all $j \neq i$, $j, i \in \{1, ..., 4\}$, and there exists a non constant holomorphic curve $g : \mathbb{C} \to \mathbb{C}^3$, such that

$$g(\mathbb{C})\bigcap\left(\bigcup_{i=1}^{4}L_{i}\bigcup L\right)=\emptyset$$

ie, the complementary of this configuration in \mathbb{C}^3 is not Brody hyperbolic. Remark: The projection of G into the complex projective space $\mathbb{C}P^2$ is not constant.

Here π denotes the canonical projection from $\mathbb{C}^3 \setminus \{0\}$ into $\mathbb{C}P^2$ and $\pi(g) := \pi \circ g$. Notice that $\pi(g)$ is well-defined since $g(\mathbb{C}) \subset \mathbb{C}^3 \setminus \{0\}$.

Theorem 8.

The complementary of five real subspaces \tilde{L}_i , i = 1...5 of real dimension 5 in \mathbb{C}^3 is Brody hyperbolic. That is to say that any holomorphic map $g: \mathbb{C} \to \mathbb{C}^3 \setminus \bigcup_{i=1}^5 \tilde{L}_i$ is constant.

References

- [1] Haggui Jalled. ON THE BOREL THEOREM. Matematiqki Bilten, 45 (LXXI) No.1, 17–21. 2021
- [2] B. Saleur. Un théorème de Bloch presque complexe, volume 46 of Ann. Inst. Fourier (Grenoble). 64(2):401-428, 2014.
- [3] A. Jalled. ON THE BRODY HYPERBOLICITY OF THE COMPLEX SPACE C3 AVOIDING COMPLEX AND REAL HYPERPLANES, Ukrains'kyi Matematychnyi Zhurnal. 2025.
- [4] H. Fathi, A. Jalled. Some remarks on a theorem of Green, Proceedings of the International Geometry Center. Vol. 15, no. 3-4. pp. 177–183 (2022)