ON THE MAPPING OF SURFACES OF EUCLIDEAN SPACES

Najaf Aliyev

(Baku State University, Academic Zahid Khalilov str.33, AZ 1148, Azerbaijan.) *E-mail:* nacafaliyev@bsu.edu.az

Fuad Aliyev

(Azerbaijan Diplomatic Academy, Ahmadbey Aghaoghlu str. 61, Baku, AZ 1008, Azerbaijan) *E-mail:* fnaaliyev@ada.edu.az

Let us consider the Euclidean spaces E_4 and \overline{E}_4 as completely orthogonal subspaces in the proper Euclidean space E_8 , having one common point O. Let V_2 and \overline{V}_2 be smooth surfaces in E_4 and \overline{E}_4 respectively.

We will study differentiable one-to-one mapping T of a domain $\Omega \subset V_2$ onto a domain

 $\overline{\Omega} \subset \overline{V}_2$. If a point X_1 inscribes a domain Ω , and $X_2 = T(X_1) \subset \overline{\Omega}$, then a point X with radius vector

vector $\overrightarrow{X} = \overrightarrow{X}_1 + \overrightarrow{X}_2$ inscribes a certain two-dimensional surface V_2^* , called the graph of the mapping T [1].

In [2], [3], [4], it is shown that in this case, each surface V_2 and \overline{V}_2 , there arise orthogonal sets $\delta_2 \subset V_2$ and $\overline{\delta}_2 \subset \overline{V}_2$.

The following theorems proved

Theorem 1. The sets δ_2 and $\overline{\delta}_2$ correspond to the mapping T if and only if one of the following conditions is satisfied:

1) the sets δ_2 and $\overline{\delta}_2$ coincide with the base of the mapping T,

2) the mapping T is conformal.

Theorem 2. If the surfaces V_2 and \overline{V}_2 carry conjugate sets and these sets correspond, then the sets δ_2 and $\overline{\delta}_2$ serve as the basis of the mapping T if and only if the condition.

$$\vec{C}_{12}\left[\left(C_{12}^4\overline{\gamma}^{1i} - C_{12}^3\overline{\gamma}^{2i}\right)\overrightarrow{e}_{4+i}\right] = 0$$

is satisfied.

Theorem 3. The base of the mapping T harmonically separates the conjugate sets Σ_2 and $\overline{\Sigma}_2$ if and only if condition $\overrightarrow{C}_{12} \left(C_{12}^3 \overrightarrow{e}_1 - C_{12}^4 \overrightarrow{e}_2 \right) = 0$ is satisfied.

Theorem 4. A pair of surfaces V_2 , \overline{V}_2 , carrying conjugate sets corresponding to the mapping T is determined by specifying four functions of two arguments.

Note that an arbitrary pair of surfaces V_2 , \overline{V}_2 , is defined by specifying six functions of two arguments (two functions for each of the surfaces $V_2 \subset E_4$ and $\overline{V}_2 \subset E_4$ - and two functions for specifying the mapping $T: \Omega \to \overline{\Omega}$).

Theorem 5. If the surfaces V_2 and \overline{V}_2 carry orthogonal conjugate networks and these networks correspond, then the networks δ_2 and $\overline{\delta}_2$ correspond in this mapping T if and only if one of the following conditions is satisfied:

1) $C_{12}^3 = 0, C_{12}^4 \neq 0$ (or $C_{12}^4 = 0, C_{12}^3 \neq 0$). Here C_{12}^3, C_{12}^4 do not vanish simultaneously, since $\operatorname{rang} \left\| C_{ij}^n \right\| = 3$. Geometrically, this means that the vector \overrightarrow{C}_{12} is either collinear with the vector $\overrightarrow{\mathcal{E}}_3$, or with $\overrightarrow{\mathcal{E}}_4$.

2) The mapping T is conformal. Considering that the vector \vec{C}_{12} is the following decomposition.

$$\overrightarrow{C}_{12} = \overrightarrow{m} - \overrightarrow{\overrightarrow{m}}$$

we have

Corollary 6. Let $\overline{\Sigma}_2 = T(\Sigma_2)$ and let the sets Σ_2 and $\overline{\Sigma}_2$ be orthogonal and conjugate. The sets Σ_2^* of the graph V_2^* is a set of curvature lines with respect to the mean normal if and only if

$$\overrightarrow{\mu}^* \cdot \overrightarrow{m} = \overrightarrow{\mu}^* \cdot \overrightarrow{\overline{m}}$$

where $\overrightarrow{\mu}^*$ is the mean normal vector of the surface V_2^* .

References

- [1] Bazylev, V.T. On geometry of differentiable mappings of Euclidean spaces. Uch. Zapiski MGPI, n.374(1), 28-40, 1970.
- [2] Aliyev N.Y. On the geometry of mappings of surfaces of Euclidean spaces. Scientific notes of ASU, a series of physical and mathematical sciences. n.5, 23-29, 1979.
- [3] Aliyev N.Y. In one case of mappings of surfaces of codimension two of Euclidean spaces. Scientific notes of ASU, A series of physical and mathematical sciences. DAN Azerb.SSR, 39(4), 3-7, 1983.
- [4] Aliyev N.Y. On mappings of p-dimensional surfaces in Euclidean spaces E_n. International Electronic Journal of Geometry. 13 (1), 17–20 (2020). https://doi.org/10.36890/iejg.633279