THOMAE FORMULAS IN APPLICATION TO FINDING REALITY CONDITIONS FOR INTEGRABLE HIERARCHIES

Julia Bernatska

(University of Connecticut) E-mail: julia.bernatska@uconnn.edu

Spectral curves of the KdV, sine-Gordon, and mKdV hierarchies all belong to the family of hyperelliptic curves of the form

$$\mathcal{C}: \qquad f(x,y) \equiv -y^2 + \mathcal{P}(x) \equiv -y^2 + x^{2g+1} + \sum_{i=1}^{2g} \lambda_{2i+2} x^{2g-i} = 0, \tag{1}$$

where the genus g of C coincides with the number of gaps of a hamiltonian systems in the hierarchy. Parameters $\lambda = \{\lambda_{2i+2}\}_{i=1}^{2g}$ serve as integrals of motion.

Let $\operatorname{Jac}(\mathcal{C}) = \mathbb{C}^g / \{\omega, \omega'\}$ be the Jacobian variety of \mathcal{C} with respect to the lattice generated by columns of not normalized period matrices $\omega = (\omega_{i,j}), \, \omega' = (\omega'_{i,j})$ defined by

$$\omega_{i,j} = \int_{\mathfrak{a}_j} \mathrm{d}u_{2i-1}, \qquad \omega'_{i,j} = \int_{\mathfrak{b}_j} \mathrm{d}u_{2i-1}, \quad \text{where} \quad \mathrm{d}u_{2i-1} = \frac{x^{g-i}\mathrm{d}x}{-2y}.$$

Second kind period matrices $\eta = (\eta_{i,j}), \eta' = (\eta'_{i,j})$ are obtained from the second kind differentials associated with the first kind differentials $du = (du_1, du_3, \ldots, du_{2g-1})^t$ defined above.

Each curve C is uniformized by means of the multiply periodic \wp -functions

$$\wp_{i,j}(u) = -\frac{\partial^2 \log \sigma(u)}{\partial u_i \partial u_j}, \qquad \wp_{i,j,k}(u) = -\frac{\partial^3 \log \sigma(u)}{\partial u_i \partial u_j \partial u_k},$$

which generalize the Weierstrass \wp -function to higher genera. The sigma function is defined by

$$\sigma(u) = C \exp\left(-\frac{1}{2}u^t \varkappa u\right) \theta[K](\omega^{-1}u; \omega^{-1}\omega'), \qquad (2)$$

see [1, Eq.(2.3)], where [K] is the characteristic of the vector K of Riemann constants, and $\varkappa = \eta \omega^{-1}$. The mentioned completely integrable equations have the following finite-gap solutions, $b \in \mathbb{R}$, $c_i \in \mathbb{R}$,

$$\begin{split} & \text{KdV} \qquad w_t = 6ww_x + w_{xxx} \qquad w(x,t) = -b\wp_{1,1}(u), \quad u = -b(x,t,c_5,\ldots,c_{2g-1})^t + \omega K, \\ & \text{sine-Gordon} \qquad \phi_{t,x} = 4\sin\phi \qquad \qquad \phi(x,t) = i\log\left(-\lambda_{4g}^{-1/2}\wp_{1,2g-1}(u)\right), \quad u = ib(x,c_3,\ldots,c_{2g-3},t)^t + \omega K, \\ & \text{sinh-Gordon} \qquad \phi_{t,x} = -4\sinh\phi \qquad \qquad \phi(x,t) = \log\left(-\lambda_{4g}^{-1/2}\wp_{1,2g-1}(u)\right), \quad u = b(x,c_3,\ldots,c_{2g-3},t)^t + \omega K, \\ & \text{mKdV} \qquad w_t = 6\varsigma w^2 w_x - w_{xxx} \quad w(x,t) = -\frac{b\wp_{1,1,2N-1}(u)}{2\wp_{1,2N-1}(u)}, \quad u = b(x,-4b^2t,c_5,\ldots,c_{2g-1})^t + \omega K. \end{split}$$

In the case of defocusing mKdV, assign $\varsigma = 1$, b = b. In the case of focusing mKdV, $\varsigma = -1$, b = ib.

The reality conditions require all solutions to be real-valued and bounded functions of real variables x, and t. That is, the reality conditions are specified by the choice of a path in $\text{Jac}(\mathcal{C})$ where a solution of the system in question is real-valued. An answer to this question is obtained from the analysis of values of the σ -function at half-periods on the spectral curve \mathcal{C} .

Recall, that after separation of variables, a g-gap hamiltonian system in one of the mentioned hierarchies splits into g one-particle systems, whose phase trajectories are determined by (1), namely by $f(x_i, y_i) = 0$, i = 1, ..., g, where x_i serves as the coordinate, and y_i as the momentum. Thus, $-\mathcal{P}(x)$ serves as the potential, and so roots of \mathcal{P} serve as turn points. Therefore, the Abel image of a divisor composed from g points, one on each one-particle trajectory, goes through half-periods. For the purpose of a bounded solution, these half-periods should be non-singular. The Thomae formulas introduce a connection between null values of the theta function with characteristics (or its first non-vanishing derivative), called theta constants (or theta derivatives), on the one hand, and x-coordinates of the branch points which produce half-periods corresponding to the characteristics, on the other hand. Instead of theta constants and theta derivatives we use values of the σ -function (or its first non-vanishing derivative) at half-periods. Each half-period is represented by a partition on the set of indices of branch points.

Let $S = \{0, 1, 2, \ldots, 2g+1\}$ be the set of indices of all branch points, and 0 stands for infinity. A partition $\mathcal{I}_0 \cup \mathcal{J}_0 = S$, $\operatorname{card} \mathcal{I}_0 = \operatorname{card} \mathcal{J}_0 = g+1$, represents a characteristic of multiplicity 0, or an even non-singular characteristic, which describes a half-period Ω_0 such that $\sigma(\Omega_0) \neq 0$. A partition $\mathcal{I}_{\mathfrak{m}} \cup \mathcal{J}_{\mathfrak{m}} = S$, $\operatorname{card} \mathcal{I}_{\mathfrak{m}} = g+1-2\mathfrak{m}$, $\operatorname{card} \mathcal{J}_{\mathfrak{m}} = g+1+2\mathfrak{m}$, represents a characteristic of multiplicity \mathfrak{m} , which describes a half-period $\Omega_{\mathfrak{m}}$ such that $\partial_{u_1}^{\mathfrak{m}} \sigma(\Omega_{\mathfrak{m}}) \neq 0$ and $\partial_{u_1}^{\mathfrak{r}} \sigma(\Omega_{\mathfrak{m}}) = 0$ if $0 \leq \mathfrak{r} < \mathfrak{m}$. All half-periods represented by partitions $\mathcal{I}_{\mathfrak{m}} \cup \mathcal{J}_{\mathfrak{m}} = S$ with $\mathfrak{m} > 0$ are called singular, due to \wp -functions have singularities at such half-periods.

In the fundamental domain of $\operatorname{Jac}(\mathcal{C})$, there exist 2^{2g} half-periods. In the case of a real curve (with real parameters λ), these half-periods form 2^g lines parallel to the real axes, and 2^g lines parallel to the imaginary axes, each line contains 2^g half-periods. It is proven, see [2, Propositions 2, 3], [3, Theorem 4], that there exists only one line parallel to the real axes, and only one line parallel to the imaginary axes, which contains no singular half-periods. Any of the two lines can serve as the domain for finite-gap solutions of the integrable systems.

Further, the reality conditions require real values of solutions, that is for $s \in \mathbb{R}^{g}$

 $\begin{array}{lll} \mathrm{KdV} & \wp_{1,1}(s+\omega K)\in\mathbb{R},\\ \mathrm{sine-Gordon} & |\wp_{1,2g-1}(\imath s+\omega K)|^2=\lambda_{4g},\\ \mathrm{sinh-Gordon} & |\wp_{1,2g-1}(s+\omega K)|^2=\lambda_{4g},\\ \mathrm{defocusing}\ \mathrm{mKdV} & \frac{\wp_{1,1,2N-1}(s+\omega K)}{\wp_{1,2N-1}(s+\omega K)}\in\mathbb{R},\\ \mathrm{focusing}\ \mathrm{mKdV} & \imath\frac{\wp_{1,1,2N-1}(\imath s+\omega K)}{\wp_{1,2N-1}(\imath s+\omega K)}\in\mathbb{R}.\\ \end{array}$

Direct computations of the above expressions show that not all real curves can serve as spectral curves of the mentioned integrable hierarchies. As proven in [2, Propositions 4, 5], [3, Theorem 5], [4, Theorem 5], the requires reality conditions are satisfied on the following curves.

Theorem 1. Hyperelliptic curves which possess a branch point at infinity, and all other branch points are real, serve as spectral curves for the KdV hierarchy.

Theorem 2. There exist two types of real hyperelliptic curves which satisfy the reality conditions for the sine(sinh)-Gordon equation and the mKdV equation:

- (RC) hyperelliptic curves which possess a branch point at infinity, a branch point at the origin, and all other branch points are real.
- (IC) hyperelliptic curves which possess a branch point at infinity, a branch point at the origin, and all other branch points split in complex conjugate pairs.

Curves (RC) serve as spectral for the sinh-Gordon, and defocusing mKdV hierarchies. Curves (IC) serve as spectral for the sine-Gordon, and focusing mKdV hierarchies.

References

- Victor M. Buchstaber, Victor Z. Enolskii, and Dmitry V. Leykin. Hyperelliptic Kleinian functions and applications, preprint ESI 380, Vienna, 1996
- [2] Julia Bernatska, Reality conditions for the KdV equation and exact quasi-periodic solutions in finite phase spaces, J. Geom. Phys., 206, 105322, 2024.

- [3] Julia Bernatska, Reality conditions for the sine-Gordon equation and exact quasi-periodic solutions in finite phase spaces, arXiv:2501.07862.
- [4] Julia Bernatska, Exact quasi-periodic solutions to the MKdV equation, (to appear)