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In his ground-laying work [1], Grünbaum set up a general framework for quantifying the point
(a)symmetry of convex bodies, i.e., compact convex sets with nonempty interior. Specifically, a mea-
sure of (a)symmetry is a similarity-invariant (or even affinely invariant) Hausdorff continuous function
f that takes convex bodies to the unit interval with the property that f(K) = 1 if and only if K is
point-symmetric.
In [1], some generalizations are discussed, for example quantifying (a)symmetry with respect to

reflections across affine subspaces of dimension at least one. However, the author mentions lack of
results in the literature in this direction. Different notions of chirality or axiality for quantifying the
(a)symmetry of planar shapes with respect to reflections across straight lines have been investigated
in the mathematical literature in the past decades. Asymmetry notions for planar convex bodies are
also studied in mathematical chemistry , where polygons serve as abstractions of molecules and where
chirality impacts chemical properties.
Our contribution is based on an extension of the notion of Minkowski asymmetry, which, for a

convex body K, is defined as the smallest dilation factor λ > 0 such that K is a subset of a translated
and dilated copy of −K, the mirror image of K upon reflection across the coordinate origin. We
incorporate reflections across higher-dimensional (affine) subspaces by defining the jth Minkowski
chirality αj(K) as the smallest dilation factor λ > 0 such that the convex body K ⊂ Rn is a subset
of a translated and dilated copy of ΦU (K), where ΦU denotes the reflection across the j-dimensional
affine subspace U ⊂ Rn for j ∈ {0, . . . , n}. Note that the Minkowski asymmetry is α0(K) in this
terminology.
It is well-known that α0(K) ∈ [1, n] for all convex bodies K ⊂ Rn, with α0(K) = 1 if and only if K

is point-symmetric, and α0(K) = n if and only if K is a fulldimensional simplex, see [1].
Our main result for convex bodies in general dimensions extends the upper bound on the Minkowski

asymmetry to all Minkowski chiralities αj(K) for any j ∈ {0, . . . , n}.
Theorem 1. Let K ⊂ Rn be a convex body and j ∈ {0, . . . , n}. Then

1 ≤ αj(K) ≤ min{n, α0(K) + 1

2

√
n},

with αj(K) = 1 if and only if there exists a j-dimensional affine subspace U such that K = ΦU (K).
In fact, the upper bound in 1 can be strengthened and unified to

αj(K) ≤
√

α0(K)n (1)
for any convex body K ⊂ Rn and j ∈ {0, . . . , n}. Since α0(K) ≤ n with α0(K) = n solely for simplices,
this result implies αj(K) ≤ n and in particular that only simplices might have jth Minkowski chirality
n.
We recall that the Banach–Mazur distance between convex bodies K,L ⊂ Rn is defined by

dBM (K,L) = inf{λ > 0 : t1 +K ⊂ A(L) ⊂ t2 + λK, A ∈ GL(Rn), t1, t2 ∈ Rn},
where GL(Rn) denotes the set of invertible real n× n matrices.
The inequality (1) is also consequential for the absolute upper bound on the jth Minkowski chirality.

Any convex body K with Minkowski asymmetry α0(K) near n is close to a simplex in the Banach-
Mazur distance. Together with (1), this means that either the supremum of αj(T ) over all simplices
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T ⊂ Rn equals n, or there exists some constant c(n, j) < n such that any convex body K ⊂ Rn

satisfies αj(K) ≤ c(n, j). In other words, we can determine whether the inequality αj(K) ≤ n is tight
by checking only simplices.
Although this remains a challenging problem in general, we are able to solve it in the planar case

for the first Minkowski chirality.
Theorem 2. Let K ⊂ R2 be a triangle. Then the infimum in the definition of α1(K) is attained at
some affine subspace U of R2 that is necessarily

(1) parallel to the bisector of one of the largest interior angles of K,
(2) parallel to the bisector of one of the smallest interior angles of K, or
(3) perpendicular to one of the longest edges of K.

Moreover, we have when K ⊂ R2 is a triangle

α1(K) =
[
1,
√
2
)
, (2)

with α1(K) = 1 precisely for isosceles triangles.
The question of how large αj(K) can be for general n and j is still open, as even deciding whether

the inequality αj(K) ≤ n is actually tight appears to be difficult. Instead, we focus on a special class
of convex bodies and answer the first question for planar point-symmetric convex bodies: the upper
bound from 1 becomes

√
2 in this case, and the following two theorems show that this bound is reached

precisely by a specific family of parallelograms.
The second theorem uses the John ellipsoid EJ(K) of a convex body K ⊂ Rn, which is the unique

volume-maximal ellipsoid contained in K.
Theorem 3. Let K ⊂ R2 be a point-symmetric convex body with dBM (K,P ) ≥ 1+ϵ for a parallelogram
P ⊂ R2 and some ϵ > 0. Then

α1(K) <
√
2
(
1− ϵ

10

)
.

Theorem 4. Let K ⊂ R2 be a parallelogram. Then the infimum in the definition of α1(K) is attained
at some affine subspace U of R2 that is necessarily parallel to

(1) the bisector of an angle formed by consecutive edges of K,
(2) the bisector of an angle formed by the diagonals of K, or
(3) a principal axis of the John ellipse EJ(K)(K) of K.

Moreover, we have when K ⊂ R2 is a parallelogram

α1(K) =
[
1,
√
2
]
, (3)

with α1(K) = 1 precisely for rectangles and rhombuses. Moreover, α1(K) =
√
2 if and only if the

angles between the diagonals coincide with the interior angles and the ratio between the lengths of the
longer edges and the shorter edges is at least

√
2.

REFERENCES
[1] Branko Grünbaum. Measures of symmetry for convex sets. Proc. Sympos. Pure Math., Vol. VII,: 233–270, 1963.


	References

