ON COLLECTIVELY AM, B-AM, KB, QUASI-KB SETS OF OPERATORS

Omer GOK

(Yildiz Technical University, Mathematics Department, Istanbul, TURKIYE) *E-mail:* gok@yildiz.edu.tr

A linearly ordered real vector space E is called a vector lattice if $\sup\{x, y\}$ exists in E for every $x, y \in E$. Let E be a vector lattice. For each $x, y \in E$ with $x \leq y$, the set $[x, y] = \{z \in E : x \leq z \leq y\}$ is said to be an order interval. A subset A of E is called order bounded if it is included in some order interval. By E^+ we denote the set of all positive elements in E. A Banach space $(E, \|.\|)$ is called a Banach lattice if E is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \leq |y|$, we have $||x|| \leq ||y||$.

Definition 1. A net (x_{α}) in an Archimedean vector lattice E is called order convergent to $x \in E$ if there exists a net (y_{β}) satisfying $y_{\beta} \downarrow 0$, and for any β there exists α_{β} such that $|x_{\alpha} - x| \leq y_{\beta}$ for all $\alpha \geq \alpha_{\beta}$.

Definition 2. An operator T from a vector lattice E into a Banach lattice F is called AM-compact if the image of each order bounded subset of E is relatively compact in F.

Every regular compact operator is an AM-compact. The identity operator $I : l_1 \to l_1$ is an AM-compact operator, but it is not compact operator.

Definition 3. Let $\tau \subset L(X,Y)$. τ is called collectively AM-compact if for every order interval [x,y] in X the set $\tau[x,y] = \bigcup_{T \in \tau} T[x,y]$ is relatively compact.

Definition 4. Let A and B be subsets of $L^+(X, Y)$. A is called dominated by B if, for each $S \in A$ there exists $T \in B$ such that $S \leq T$.

Definition 5. Let E, F be normed lattices and $T: E \to F$ is called *KB*-operator for every bounded increasing sequence (x_n) in E^+ , there is an $x \in E$ such that (Tx_n) converges to Tx in norm.

Definition 6. Let E, F be normed lattices and $\tau \subseteq L(E, F)$. We say that τ is a collectively KB set of operators if, for every increasing bounded sequence (x_n) in E^+ , there is an indexed subset $\{x_T\}_{T \in \tau}$ of E satisfying $\{(Tx_n) : T \in \tau\}$ norm converges to $\{Tx_T\}_{T \in \tau}$.

A collectively AM-compact(b - AM compact, KB)- set of operators is a generalization of the AM-compact(b - AM compact, KB) and quasi KB-operator. We investigate collective versions of some operators such as AM-compact, b - AM compact, KB and quasi-KB operators.

We discuss the domination problem for collectively AM-compact, b - AM compact, KB and quasi-KB sets of operators.

For this subject, we give the following references.

References

- [1] C.D. Aliprantis, Owen Burkinshaw, Positive Operators. New York: Academic Press, 1985.
- [2] P.M. Anselone, T.W. Palmer, Collectively compact sets of linear operators, Pasific J. Math., 25(3), (1968), 417-422.
- [3] E. Emelyanov, On collectively L-weakly compact sets of operators, preprint(2024), ArXiv.
- [4] E. Emelyanov, N. Erkursun-Ozcan, S. Gorokhova, Collectively order boundedness of sets of operators between ordered vector spaces, preprint (2024), ArXiv.
- [5] E. Emelyanov, On collectively σ -Levi sets of operators, preprint (2024), ArXiv.
- [6] P. Meyer- Nieberg, Banach lattşces, New York, Springer, 1991