On one geometric application of the Sturm-Hurwitz theorem

Vasyl Gorkavyy

(B. Verkin ILTPE of NASU, 47 Nauky Ave., Kharkiv 61103,Ukraine) E-mail: gorkaviy@ilt.kharkov.ua

For a smooth closed curve γ with curvatures $k_1 > 0$, $k_2 > 0$, and k_3 in the four-dimensional Euclidean space \mathbb{E}^4 , we explore the well-defined integral quantity

$$J(\gamma) = \oint_{\gamma} \sqrt{k_1^2 + k_2^2 + k_3^2} ds$$

which is invariant under rigid motions and dilatations in \mathbb{E}^4 . We address the problem of determining the sharp lower bound for $J(\gamma)$, see [1].

Clearly, $J(\gamma) \ge 2\pi$ in view of the classical Fenchel inequality $\oint_{\gamma} k_1 ds \ge 2\pi$. However, if γ has constant curvatures then the stronger estimate $J(\gamma) \ge 2\sqrt{5\pi}$ holds true, and this estimate is sharp, see [2].

We conjecture that the same inequality $J(\gamma) \ge 2\sqrt{5\pi}$ holds true in the general situation as well. At the moment, the conjecture remains still unproven.

We consider the limit situation where γ evolves smoothly into a unit circle. Specifically, we introduce a smooth family of closed curves $\{\gamma_{\varepsilon}\}_{\varepsilon\geq 0}$ in \mathbb{E}^4 represented by the position vector $x(t) = (\cos t, \sin t, \varepsilon w_1(t), \varepsilon w_2(t))$, where $w_1(t), w_2(t)$ are smooth 2π -periodic functions. This family is viewed as a perturbation of the unit circle γ_0 .

Clearly, all the geometric features of γ_{ε} are determined by the vector-function $w(t) = (w_1(t), w_2(t))$. In particular, γ_{ε} with $\varepsilon > 0$ satisfy $k_1 > 0$ and $k_2 > 0$ if and only if w(t) satisfies $w'' + w \neq 0$. In this generic case, the value of $J(\gamma_{\varepsilon})$ is well-defined for $\varepsilon > 0$, and one can explore its limit value as $\varepsilon \to 0$.

We provide a geometrically meaningful description for the value of $\lim_{\varepsilon \to 0} J(\gamma_{\varepsilon})$ in terms of the planar curve Γ represented by p = w'' + w, and then we demonstrate, as the main result, that this limit value cannot be less that $2\sqrt{5\pi}$.

$$\lim_{\varepsilon \to 0} J(\gamma_{\varepsilon}) \ge 2\sqrt{5}\pi,$$

for any choice of w(t). Moreover, the inequality is proved to be sharp in the sense that one can chose w(t) with $w'' + w \neq 0$ so that $\lim_{\varepsilon \to 0} J(\gamma_{\varepsilon}) = 2\sqrt{5\pi}$. Thus, the proved statement provides novel non-trivial arguments supporting the conjecture under consideration.

The proof of the main result is based on the use of the Sturm–Hurwitz theorem regarding the number of zeroes of trigonometric polynomials / Fourier series, see [3], [4]. We apply this celebrated theorem of the mathematical analysis to estimate a specific tangency complexity of the planar curve Γ leading to the desired lower bound for $\lim_{\varepsilon \to 0} J(\gamma_{\varepsilon})$.

References

- [3] D. Fuchs, S. Tabachnikov. Mathematical omnibus. AMS: Providence, 2007.
- [4] Y. Martinez-Maure. A Sturm-type comparison theorem by a geometric study of plane multihedgehogs. *Illinois Journal of Mathematics*, 52: 981–993, 2008.

^[1] V. Gorkaviy. On one integral inequality for closed curves in Euclidean space. CRAS Paris, Ser.I, 321: 1587–1591, 1998.

 ^[2] V. Gorkaviy, R. Posylaieva. On the sharpness of one integral inequality for closed curves in ℝ⁴. Journal of mathematical physics, analysis, geometry, 15: 502–509, 2019.