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The central binomial coefficients are defined for integer n ≥ 0 by
(
2n
n

)
= (2n)!

(n!)2
. These numbers are

closely related to the well-known Catalan numbers, given by Cn = 1
n+1

(
2n
n

)
. The harmonic numbers

of order m and the odd harmonic numbers of order m are defined respectively by H
(m)
n =

n∑
k=1

1
km and

O
(m)
n =

n∑
k=1

1
(2k−1)m with H

(m)
0 = O

(m)
0 = 0. The cases H(1)

n = Hn and O
(1)
n = On correspond to the

ordinary harmonic and odd harmonic numbers, respectively.
In this note, we present several infinite series involving central binomial coefficients, Catalan num-

bers, harmonic numbers, products of harmonic numbers, and mixed products with odd harmonic
numbers. The method used to derive these expressions relies on integration—a classical technique
that has recently gained renewed attention in the literature [1–3], among others.
Theorem 1. We have
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π2

3
,
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22n
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22r+1(
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) Or

r
, r ̸= 0,

and more generally, for s− 1
2 ̸∈ Z<0, r ̸= 0, and r + s− 1

2 ̸∈ Z<0,
∞∑
n=0

(
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n

)
22n

Hn+r+s −Hs(
n+r+s
s+1

) =
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) .

Theorem 2. We have
∞∑
n=0
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6
,
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,

∞∑
n=0

CnHn+r+1

22n+1(n+ r + 1)
=

Hr

r
− 22r

4r2 − 1

Or+1(
2(r−1)
r−1

) ,
and more generally, for s, r ∈ C \ Z≤0, and r + s− 1

2 ̸∈ Z<0,
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Theorem 3. We have
∞∑
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6
+ 2ζ(3),
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where ζ(s) =
∞∑
n=1

1
ns , (ℜ(s) > 1) is the Riemann zeta function. More generally, for 0 ≤ r ∈ C \ Z<0,

s ∈ C \ Z≤0,
∞∑
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Theorem 4. We have
∞∑
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and more generally, if r ∈ Z≥0, then
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Theorem 5. For all x ∈ [−1/4, 1/4),
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where Li2(x) denotes the dilogarithm function, defined by Li2(x) =
∞∑
k=1

xk

k2
, |x| ≤ 1.

Theorem 6. We have
∞∑
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and, more generally, for r ∈ C \ Z≤0,
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