Ihor Havrylenko

(V.N. Karazin Kharkiv National University, Kharkiv, Ukraine) *E-mail:* ihor.havrylenko@karazin.ua

A sub-Riemannian manifold is a smooth manifold M together with a completely non-integrable smooth distribution \mathcal{H} on M (it is called a horizontal distribution) and a smooth field of Euclidean scalar products $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ on \mathcal{H} (it is called a sub-Riemannian metric). In particular, $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ can be constructed as a restriction of some Riemannian metrics $\langle \cdot, \cdot \rangle$ on M to \mathcal{H} . Here we will assume that all sub-Riemannian structures are of this form. Let Σ be a smooth oriented surface in a three-dimensional sub-Riemannian manifold M. If N_h is the orthogonal projection of the unit normal field N of Σ (in the Riemannian sense) onto \mathcal{H} and $d\Sigma$ is the Riemannian area form of Σ , then the sub-Riemannian area of a domain $D \subset \Sigma$ is defined as $A(D) = \int_{D} |N_h| d\Sigma$. The normal variation of the surface Σ defined

by a smooth function u is the map $\varphi \colon \Sigma \times I \to M \colon \varphi_s(p) = \exp_p(su(p)N(p))$, where I is an open neighborhood of 0 in \mathbb{R} and \exp_p is the Riemannian exponential map in p. Denote $A(s) = \int\limits_{\Sigma_s} |N_h| \, d\Sigma_s$,

where $\Sigma_s = \varphi_s(\Sigma)$. Then A'(0) is called the *first (normal) area variation* defined by φ , and A''(0) is called the *second* one. A surface Σ is called *minimal* if A'(0) = 0 for any normal variations with compact support in $\Sigma \setminus \Sigma_0$, where $\Sigma_0 = \{p \in \Sigma \mid N_h(p) = 0\}$ is the *singular set* of Σ . A minimal surface Σ is called *stable* if $A''(0) \geq 0$ for any normal variations with compact support in $\Sigma \setminus \Sigma_0$. We will call a surface Σ in a three-dimensional sub-Riemannian manifold *vertical* if $T_p\Sigma \perp \mathcal{H}_p$ for each $p \in \Sigma$. In particular, for such surfaces $N_h = N$ and $\Sigma_0 = \emptyset$.

In [1] we proved that a vertical surface Σ is minimal in the sub-Riemannian sense if and only if it is minimal in the Riemannian sense and derived the following second variation formula:

$$A''(0) = \int_{\Sigma} -\left(X(u) - \langle \nabla_N X, N \rangle u\right)^2 + |\nabla_{\Sigma} u|^2 - \left(\operatorname{Ric}\left(N, N\right) + |B|^2\right) u^2 d\Sigma,$$

where ∇ and Ric are the Riemannian connection and the Ricci tensor of M respectively, X is the unit normal vector field of \mathcal{H} (which is tangent to Σ because it is vertical), ∇_{Σ} and B are the Riemannian gradient and the second fundamental form of Σ respectively. It follows that if Σ is stable in the sub-Riemannian sense, it is also stable in the Riemannian sense.

The three-dimensional Riemannian Heisenberg group (also known as the three-dimensional Thurston geometry Nil) is the space \mathbb{R}^3 with coordinates (x, y, z) and with the following orthonormal basis of left-invariant vector fields defined by its nilpotent Lie group structure:

$$X_1 = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}, \ X_2 = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}, \ X_3 = \frac{\partial}{\partial z}.$$

Theorem 1. Let a sub-Riemannian structure on Nil be defined by a left-invariant two-dimensional horizontal distribution. Then its normal field should be of the form $X = \frac{1}{\sqrt{\lambda^2 + \mu^2 + 1}} (\lambda X_1 + \mu X_2 + X_3)$.

If $\lambda = \mu = 0$ then a complete connected vertical surface in this sub-Riemannian manifold is minimal if and only if it is a vertical Euclidean plane. In the other case it is minimal if and only if it is a vertical Euclidean plane over a straight line in the (x, y)-plane that has the direction (λ, μ) .

All these surfaces are stable in the sub-Riemannian sense and thus in the Riemannian sense.

The three-dimensional Thurston geometry Sol is the space \mathbb{R}^3 with coordinates (x, y, z) and with the following orthonormal basis of left-invariant vector fields defined by its solvable Lie group structure:

$$X_1 = e^{-z} \frac{\partial}{\partial x}, \ X_2 = e^z \frac{\partial}{\partial y}, \ X_3 = \frac{\partial}{\partial z}.$$

2 I. Havrylenko

Theorem 2. Let a sub-Riemannian structure on Sol be defined by a left-invariant two-dimensional horizontal distribution. Then its normal field should be of the form $X = \frac{1}{\sqrt{\lambda^2 + \mu^2 + \nu^2}} (\lambda X_1 + \mu X_2 + \nu X_3)$, where $\lambda \mu \neq 0$.

If $\nu \neq 0$ then a complete connected vertical surface in this sub-Riemannian manifold is minimal if and only if it is cylindrical and can be parameterized either as

$$r(s,t) = \left(x_0 - \frac{\lambda}{\nu}e^{-s}, t, s\right)$$
 or as $r(s,t) = \left(t, y_0 + \frac{\mu}{\nu}e^{s}, s\right)$.

If $\nu=0$ then a complete connected vertical surface is minimal if and only if it is a horizontal Euclidean plane $z=z_0$ or $\lambda=\pm\mu$ and the surface is a "hyperbolic helicoid" (previously described in [2]) with the parameterization

$$r(s,t) = \left(x_0 + \frac{1}{\sqrt{2}}e^{-t}s, y_0 \pm \frac{1}{\sqrt{2}}e^{t}s, t\right).$$

All these surfaces are stable in the sub-Riemannian sense and thus in the Riemannian sense.

The three-dimensional Thurston geometry $SL(2,\mathbb{R})$ is the universal covering of the special linear group $SL(2,\mathbb{R})$. It also can be described as the universal covering of the unit tangent bundle of the hyperbolic plane \mathbb{H}^2 with the Sasaki metric. Thus, using the half-plane model of \mathbb{H}^2 , we can present $SL(2,\mathbb{R})$ as the half-space $\{(x,y,z) \in \mathbb{R}^3 \mid y > 0\}$ with the orthonormal frame

$$Y_1 = y \frac{\partial}{\partial x} - \frac{\partial}{\partial z}, \ Y_2 = y \frac{\partial}{\partial x}, \ Y_3 = \frac{\partial}{\partial z}.$$

Note that the fields Y_1 and Y_2 here are not left-invariant.

Theorem 3. A two-dimensional horizontal distribution $\mathcal{H} = X^{\perp}$, whose normal field X is a linear combination of the fields Y_1 - Y_3 with constant coefficients, defines a sub-Riemannian structure on $\widetilde{SL(2,\mathbb{R})}$ (i.e., is its horizontal distribution) if and only if X is of the form $\frac{1}{\sqrt{\lambda^2 + \mu^2 + 1}}(\lambda Y_1 + \mu Y_2 + Y_3)$, where $\lambda \neq -1$. This sub-Riemannian structure allows vertical minimal surfaces only for $\lambda = 0$ and $\lambda = 1$.

If $\mu \neq 0$ then a complete connected vertical surface is minimal if and only if it is a half-plane $x = x_0$ for $\lambda = 0$ or a half-plane $z = z_0$ for $\lambda = 1$.

If $\mu = 0$ and $\lambda = 1$ then a complete connected vertical surface is minimal if and only if it is either a half-plane $z = z_0$ or can be parameterized as

$$r(s,t) = \left(y_0 s \cos t, y_0 \cos t, \sqrt{2}t + z_0\right).$$

If $\mu = \lambda = 0$ then a complete connected vertical surface in this sub-Riemannian manifold is minimal if and only if is a cylinder over a geodesic in \mathbb{H}^2 (see, e.g., [3]).

All these surfaces are stable in the sub-Riemannian sense and thus in the Riemannian sense.

We also find vertical minimal surfaces of a left-invariant sub-Riemannian structure defined by a horizontal distribution $\mathcal{H} = X^{\perp}$, where $X = y \cos z \frac{\partial}{\partial x} + y \sin z \frac{\partial}{\partial y} - \cos z \frac{\partial}{\partial z}$, and establish their stability.

References

- [1] I. Havrylenko, E. Petrov. Stability of vertical minimal surfaces in three-dimensional sub-Riemannian manifolds. *Proceedings of the International Geometry Center*, 2025, to appear.
- [2] L. Masaltsev. Minimal surfaces in standard three-dimensional geometry Sol^3 . J. Math. Phys., Anal., Geom., 2(1): 104-110, 2006.
- [3] R. Younes Minimal surfaces in $PSL_2(\mathbb{R})$. Ill. J. Math., 54(2):671-712,2010.