RATIONAL FACTORIZATION OF LAX TYPE FLOWS IN THE SPACE DUAL TO THE CENTRALLY EXTENDED LIE ALGEBRA OF FRACTIONAL INTEGRO-DIFFERENTIAL OPERATORS

Oksana Hentosh

(Pidstryhach Inst. for Applied Problems of Mech. and Math., NASU, Lviv, Ukraine) *E-mail:* ohen@ukr.net

The Lie-algebraic approach to the rational factorization of Lax type flows in spaces dual to certain operator Lie algebras (see, for example, [1]) and central extensions of some of them is developed for the central extension of the Lie algebra $\mathbb{A}_{\alpha} := \mathbb{A}_0\{\{D^{\alpha}, D^{-\alpha}\}\}$, consisting of fractional integrodifferential operators such as $a_{\alpha} := \sum_{j \in \mathbb{Z}_+} a_j D^{\alpha(p_{\alpha}-j)}$, where $\mathbb{A}_0 := A\{\{D, D^{-1}\}\}$ is the Lie algebra of ordinary integral-differential operators, $A := W_2^{\infty}(\mathbb{R}; \mathbb{C}) \cap W_{\infty}^{\infty}(\mathbb{R}; \mathbb{C}), D^{\alpha} : A \to A$ is a Riemann-Liouville fractional derivative, $\alpha \in \mathbb{C} \setminus \mathbb{Z}$, $\operatorname{Re} \alpha \neq 0$, $a_j \in \mathbb{A}_0$, $j \in \mathbb{Z}_+$, $p_{\alpha} \in \mathbb{N}$ is an order of the fractional integro-differential operator a_{α} . This Lie algebra possesses the standard commutator $[a_{\alpha}, b_{\alpha}] = a_{\alpha} \circ b_{\alpha} - b_{\alpha} \circ a_{\alpha}$, and invariant with respect to this commutator scalar product $(a_{\alpha}, b_{\alpha}) := \int_{\mathbb{R}} \operatorname{res}_D (\operatorname{res}_{D_{\alpha}} (a_{\alpha} \circ b_{\alpha} D^{-\alpha})) dx$, where $a_{\alpha}, b_{\alpha} \in \mathbb{A}_{\alpha}$, "o" is a symbol of the operator product, $\operatorname{res}_{D_{\alpha}}$ denotes a coefficient at $D^{-\alpha}$ for any fractional integral-differential operator.

On the central extension $\hat{\mathbb{A}}_{\alpha} := \bar{\mathbb{A}}_{\alpha} \oplus \mathbb{C}$ of the parameterized Lie algebra $\bar{\mathbb{A}}_{\alpha} := \prod_{y \in \mathbb{S}^1} \mathbb{A}_{\alpha}$ by the Maurer-Cartan 2-cocycle $\omega_2(\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}) := \langle \mathbf{a}_{\alpha}, \partial \mathbf{b}_{\alpha}/\partial y \rangle$, where $\langle \mathbf{a}_{\alpha}, \mathbf{b}_{\alpha} \rangle = \int_{\mathbb{S}^1} (\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}) dy$, $\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha} \in \bar{\mathbb{A}}_{\alpha}$, there exist the commutator

$$[(\mathbf{a}_{\alpha}, d), (\mathbf{b}_{\alpha}, e)] = ([\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}], \omega_2(\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha})), \quad (\mathbf{a}_{\alpha}, d), (\mathbf{b}_{\alpha}, e) \in \widehat{\mathbb{A}}_{\alpha},$$

and corresponding invariant scalar product

$$((\mathbf{a}_{\alpha}, d), (\mathbf{b}_{\alpha}, e)) = \langle \mathbf{a}_{\alpha}, \mathbf{b}_{\alpha} \rangle + ed.$$
(1)

The Lie algebra $\bar{\mathbb{A}}_{\alpha}$ allows the splitting into the direct sum of its two Lie subalgebras $\bar{\mathbb{A}}_{\alpha} = \bar{\mathbb{A}}_{\alpha,+} \oplus \bar{\mathbb{A}}_{\alpha,-}$, where $\bar{\mathbb{A}}_{\alpha,+}$ is the Lie subalgebra of the formal power series by the operator D^{α} . On the space $\hat{\mathbb{A}}_{\alpha}^*$ dual to the central extension $\hat{\mathbb{A}}_{\alpha}$ with respect to the scalar product (1) the \mathcal{R} -deformed commutator

$$[(\mathbf{a}_{\alpha}, d), (\mathbf{b}_{\alpha}, e)]_{\mathcal{R}} = ([\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}]_{\mathcal{R}}, \omega_{2,\mathcal{R}}(\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha})),$$
$$[\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}]_{\mathcal{R}} = [\mathcal{R}\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}] + [\mathbf{a}_{\alpha}, \mathcal{R}\mathbf{b}_{\alpha}], \qquad \omega_{2,\mathcal{R}}(\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}) = \omega_{2}(\mathcal{R}\mathbf{a}_{\alpha}, \mathbf{b}_{\alpha}) + \omega_{2}(\mathbf{a}_{\alpha}, \mathcal{R}\mathbf{b}_{\alpha}),$$

where $\mathcal{R} : \bar{\mathbb{A}}_{\alpha} \to \bar{\mathbb{A}}_{\alpha}$ is a space endomorphism, $\mathcal{R} = (P_+ - P_-)/2$, P_{\pm} are projectors on $\mathbb{A}_{\alpha,\pm}$ accordingly, generates the Lie-Poisson bracket

$$\{\gamma,\mu\}_{\mathcal{R}}(l_{\alpha},c) = \langle l_{\alpha}, [\nabla\gamma(l_{\alpha}),\nabla\mu(l_{\alpha})]_{\mathcal{R}}\rangle + c\omega_{2,\mathcal{R}}(\nabla\gamma(l_{\alpha}),\nabla\mu(l_{\alpha})) := \langle\nabla\gamma(l_{\alpha}),\Theta\nabla\mu(l_{\alpha})\rangle, \quad (2)$$

where $\gamma, \mu \in \mathcal{D}(\bar{\mathbb{A}}^*_{\alpha})$ are smooth by Frechet functionals on $\bar{\mathbb{A}}^*_{\alpha} \simeq \bar{\mathbb{A}}_{\alpha}$, " ∇ " is a symbol of the functional gradient, the Poisson operator $\Theta: T^*(\bar{\mathbb{A}}^*_{\alpha}) \to T(\bar{\mathbb{A}}^*_{\alpha})$ acts by the rule

$$\Theta: \nabla \gamma(l_{\alpha}) \mapsto -[l_{\alpha} - c\partial/\partial y, (\nabla \gamma(l_{\alpha}))_{-}] + [l_{\alpha} - c\partial/\partial y, \nabla \gamma(l_{\alpha})]_{\leq 0}$$

for any smooth by Frechet functional $\gamma \in \mathcal{D}(\bar{\mathbb{A}}^*_{\alpha})$, $T(\bar{\mathbb{A}}^*_{\alpha})$ and $T^*(\bar{\mathbb{A}}^*_{\alpha})$ are tangent and cotangent spaces to $\bar{\mathbb{A}}^*_{\alpha}$ accordingly, $(l_{\alpha}, c) \in \hat{\mathbb{A}}^*_{\alpha} \simeq \hat{\mathbb{A}}_{\alpha}$, $l_{\alpha} \in \bar{\mathbb{A}}^*_{\alpha}$ is a fractional integro-differential operator of the order $q_{\alpha} \in \mathbb{N}$. By means of the Casimir invariants $\gamma_n \in I(\hat{\mathbb{A}}^*_{\alpha})$, $n \in \mathbb{N}$, satisfying the relationship $[l_{\alpha} - c\partial/\partial y, \nabla \gamma_n(l_{\alpha})] = 0$ at a point $(l_{\alpha}, c) \in \hat{\mathbb{A}}^*_{\alpha}$, as Hamiltonians, in the dual space $\hat{\mathbb{A}}^*_{\alpha} \simeq \hat{\mathbb{A}}_{\alpha}$ the Lie-Poisson bracket (2) determines the hierarchy of Lax type Hamiltonian flows in the form

$$\partial l_{\alpha}/\partial t_n = [(\nabla \gamma_n(l_{\alpha}))_+, l_{\alpha} - c\partial/\partial y], \quad t_n \in \mathbb{R}, \quad n \in \mathbb{N},$$
(3)

where the subscript "+" denotes the projection of the corresponding element from $\bar{\mathbb{A}}_{\alpha}$ on the Lie subalgebra $\bar{\mathbb{A}}_{\alpha,+}$ and $\nabla \gamma_n(l_{\alpha}) := \sum_{j \in \mathbb{Z}_+} a_{n,j} D^{\alpha(n-j)}$. One considers another hierarchy of Lax type Hamiltonian flows on the dual space $\hat{\mathbb{A}}^*_{\alpha}$ such as

$$dl_{\alpha}/dt_n = [(\nabla \gamma_n(l_{\alpha}))_+, \tilde{l}_{\alpha} - c\partial/\partial y], \quad t_n \in \mathbb{R}, \quad n \in \mathbb{N},$$
(4)

for some fractional integro-differential operator $\tilde{l} \in \bar{\mathbb{A}}^*_{\alpha}$ of the order $q_{\alpha} \in \mathbb{N}$, which is related with the operator $l_{\alpha} \in \bar{\mathbb{A}}^*_{\alpha}$ by the generalized gauge transformation

$$\tilde{l}_{\alpha}(0) - c\partial/\partial y = B_{\alpha}(0)^{-1}(l_{\alpha}(0) - c\partial/\partial y)B_{\alpha}(0),$$
(5)

where $B_{\alpha}(0) \in \mathbb{A}_{\alpha,+}$ is some fractional differential operator of the order $s_{\alpha} \in \mathbb{N}$ with constant coefficients, at the initial moment of the time $t_n \in \mathbb{R}$ for every $n \in \mathbb{N}$.

Theorem 1. If for every $n \in \mathbb{N}$ at the initial moment of the time $t_n \in \mathbb{R}$ the fractional integrodifferential operators $l_{\alpha}, \tilde{l}_{\alpha} \in \tilde{g}^*$ of the order $q_{\alpha} \in \mathbb{N}$ are related by the relationship (5), there exist such fractional differential operators $A_{\alpha}, B_{\alpha} \in \bar{\mathbb{A}}_{\alpha,+}$ of the orders $q_{\alpha} + s_{\alpha}$ and s_{α} accordingly, where $s_{\alpha} \in \mathbb{Z}_+$, $s_{\alpha} < q_{\alpha}$, that the equalities

$$l_{\alpha} = A_{\alpha} B_{\alpha}^{-1}, \quad \tilde{l}_{\alpha} = B_{\alpha}^{-1} (A_{\alpha} - c\partial B_{\alpha} / \partial y)$$
(6)

hold. The operators $A_{\alpha}, B_{\alpha} \in \overline{\mathbb{A}}_{\alpha,+}$ satisfy the following systems of evolution equations

$$dA_{\alpha}/dt_{n} = (\nabla\gamma_{n}(l_{\alpha}))_{+}A_{\alpha} - A_{\alpha}(\nabla\gamma_{n}(l))_{+} + c(\partial(\nabla\gamma_{n}(l_{\alpha}))_{+}/\partial y)B_{\alpha},$$

$$dB_{\alpha}/dt_{n} = (\nabla\gamma_{n}(l_{\alpha}))_{+}B_{\alpha} - B_{\alpha}(\nabla\gamma_{n}(\tilde{l}_{\alpha}))_{+}, \quad n \in \mathbb{N},$$
(7)

or, equivalently,

$$dA_{\alpha}/dt_{n} = (A_{\alpha}(\nabla\gamma_{n}(l_{\alpha}))_{-})_{+} - ((\nabla\gamma_{n}(l_{\alpha}))_{-}A_{\alpha})_{+} - c((\partial(\nabla\gamma_{n}(l_{\alpha}))_{-}/\partial y)B_{\alpha})_{+},$$

$$dB_{\alpha}/dt_{n} = (B_{\alpha}(\nabla\gamma_{n}(l_{\alpha}))_{-})_{+} - ((\nabla\gamma_{n}(\tilde{l}_{\alpha}))_{-}B_{\alpha})_{+}, \quad n \in \mathbb{N}.$$

which possess an infinite sequence of the conservation laws $H_n \in \mathcal{D}(\bar{\mathbb{A}}_{\alpha,+} \times \bar{\mathbb{A}}_{\alpha,+}), n \in \mathbb{N}$, in the forms

$$H_n(A_\alpha, B_\alpha) := \gamma_n(l_\alpha)|_{l_\alpha = A_\alpha B_\alpha^{-1}} = \gamma_n(l_\alpha)|_{\tilde{l}_\alpha = B_\alpha^{-1}(A_\alpha - c\partial B_\alpha/\partial y)}.$$

Theorem 2. For every $n \in \mathbb{N}$ the system of evolution equations (7), given on the subspace $\overline{\mathbb{A}}_{\alpha,+} \times \overline{\mathbb{A}}_{\alpha,+} \subset \overline{\mathbb{A}}_{\alpha} \times \overline{\mathbb{A}}_{\alpha}$, is Hamiltonian with respect to the Poisson bracket $\{.,.\}_{\mathcal{L}}$ which arises as a reduction of the Poisson bracket $\{.,.\}_{\mathcal{L}}$ with the corresponding Poisson operator $\overline{\mathcal{L}} = (P')^{-1}(\Theta \oplus \widetilde{\Theta})(P'^*)^{-1}$, where $\widetilde{\Theta}$ is a Poisson operator generating the Poisson bracket (2) at a point $\tilde{l} \in \overline{\mathbb{A}}_{\alpha}^*$, $P'^* : T^*(\overline{\mathbb{A}}_{\alpha}^* \oplus \overline{\mathbb{A}}_{\alpha}^*) \to T^*(\overline{\mathbb{A}}_{\alpha} \times \overline{\mathbb{A}}_{\alpha})$ is an operator adjoint to the Frechet derivative $P' : T(\overline{\mathbb{A}}_{\alpha} \times \overline{\mathbb{A}}_{\alpha}) \to T(\overline{\mathbb{A}}_{\alpha}^* \oplus \overline{\mathbb{A}}_{\alpha}^*)$ of the Backlund transformation $P : (A_{\alpha}, B_{\alpha}) \in \overline{\mathbb{A}}_{\alpha} \times \overline{\mathbb{A}}_{\alpha} \mapsto (l_{\alpha}, \tilde{l}_{\alpha}) \in \overline{\mathbb{A}}_{\alpha}^* \oplus \overline{\mathbb{A}}_{\alpha}^*$, determined by the equalities (6), $(P'^*)^{-1}$ is inverse to one, on $\overline{\mathbb{A}}_{\alpha,+} \times \overline{\mathbb{A}}_{\alpha,+}$ and Hamiltonians $\overline{H}_n \in \mathcal{D}(\overline{\mathbb{A}}_{\alpha,+} \times \overline{\mathbb{A}}_{\alpha,+})$ in the forms

$$H_n(A_{\alpha}, B_{\alpha}) := \gamma_n(l_{\alpha})|_{l_{\alpha} = A_{\alpha}B_{\alpha}^{-1}} + \gamma_n(l_{\alpha})|_{\tilde{l}_{\alpha} = B_{\alpha}^{-1}(A_{\alpha} - c\partial B_{\alpha}/\partial y)}, \quad n \in \mathbb{N}.$$

In the case of c = 0 the second Hamiltonian representation for the hierarchy (7) is also found.

The rational factorization method for the central extension $\hat{\mathbb{A}}_{\alpha}$ is applied to construct a new integrable hierarchy of two-dimensional nonlinear dynamical systems with fractional derivatives by one spatial variable as well as a new integrable hierarchy of two-dimensional hydrodynamic Benney-type systems, which is its quasiclassical approximation.

References

 Oksana Hentosh, Anatolij Prykarpatski. Rational factorization of Hamiltonian flows in the space dual to the Lie algebra of fractional integro-differential operators and integrable Benney-type hydrodynamic systems. J. of Mathematical Sciences, 279(3): 308–329, 2024.