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In the spirit of arithmetic topology, we propose to study the p-adic limit values of the number of
spanning trees in pro-p covers of graphs. This talk is based on a joint work [KU25] and will focus on
a specific example.
Let X be a finite connected graph, that is, a 1-dimensional CW complex. A spanning tree T of X is

a connected subgraph that contains all vertices and no loops. The number of spanning trees of each
X is denoted by k(X). A basic reference for graphs is [Ter11].
Suppose that X is the 8-graph, consisting of one vertex and two looped edges. Let s1, s2 denote

the elements of the fundamental group π1(X) represented by the two loops. We consider a specific
surjective homomorphism

φ : π1(X)→ Z; s1 7→ 1, s2 7→ 2.

The Z-cover X∞ → X corrreponding to Kerφ is so-called the Fibonacci tower. The adjacency matrix
yields the Ihara zeta function and the Ihara polynomial I(t) = 4− (t+ 1/t)− (t2 + 1/t2). We further
put J(t) := t2I(t)/(t− 1)2 = t2 + 3t+ 1.
For each n ∈ Z>0, let Xn → X denote the Z/nZ-subcover. Then, Pengo–Vallieres [PV25, Theorem

3.6] asserts that the number of spanning trees of Xn may be calculated by using the cyclic resultant
Res(tn − 1, J(t)) =

∏
ζn=1 J(ζ) ∈ Z as

k(Xn) = k(X)n2−1|Res(tn − 1, J(t))|/J(1).

On the other hand, p being a prime number, Kisilevsky [Kis97] and Ueki–Yoshizaki [UY25] proved
that p-power-th cyclic resultant p-adically converges in the ring of p-adic integers Zp = lim←−n

Z/pnZ
and gave explicit formulae. For instanse, if Φm(t) ∈ Z[t] denote the m-th cyclotomic polynomial and
f(t) ∈ Z[t] satisfies f(t) ≡ Φm(t) mod p, then

lim
n→∞

Res(tpn − 1, f(t)) = Φm(1)

holds.
Combining the above, we obtain the following for the 8-graph X.

Theorem 1. The sequence (k(Xpn))n converges in Zp. We have
lim
n→∞

k(Xpn)/p
n ∈ Q ⇐⇒

iff
p = 2, 3, 5.

In addition, if we put rn := |Res(tn − 1, J(t))|, then we have
lim
n→∞

|r2n | = −3, lim
n→∞

|r3n | = 2, lim
n→∞

|r5n | = 0.

The non-5 part of |r5n | is |r5n |/52n+1. Fix an embedding Q ↪→ Q̂5 of an algebraic closure of Q into
the completion of an algebraic closure of the 5-adic number field. Let α, β denote the roots of J(t)
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and let log denote the 5-adic logarithm. Then we have

lim
n→∞

|r5n |/52n+1 =
logα logβ

5
∈ Z5.

We may observe that these sequences converge quickly:

If p = 2,
n 1 2 3 4 5 6

−Res(t2n − 1, J(t)) 5 45 2205 4870845 23725150497405 ...
−Res(t2n − 1, J(t)) mod 2n −3 −3 −3 −3 −3 −3

.

If p = 3,
n 1 2 3 4 5 6

Res(t3n − 1, J(t)) 20 5780 192900153620 ... ... ...
Res(t3n − 1, J(t)) mod 3n 2 2 2 2 2 2

.

If p = 5,
n 1 2 3 4 5 6

Res(t5n − 1, J(t)) 53 55 · 30012 57 · 30012 · 1584141679640457000012 ... ... ...
1

52n+1Res(t5
n − 1, J(t)) mod 5n 1 1 1 376 2876 15376

.
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