The p-adic class numbers of Z-covers of graphs

Reo Kobayashi*

(Department of Mathematics, Faculty of Science, Ochanomizu University; 2-1-1 Otsuka, Bunkyo-ku,

112-8610, Tokyo, Japan)

E-mail: kobayashi.reo@outlook.jp

Jun Ueki

(Department of Mathematics, Faculty of Science, Ochanomizu University; 2-1-1 Otsuka, Bunkyo-ku, 112-8610, Tokyo, Japan)

E-mail: uekijun46@gmail.com

In the spirit of arithmetic topology, we propose to study the p-adic limit values of the number of spanning trees in pro-p covers of graphs. This talk is based on a joint work [KU25] and will focus on a specific example.

Let X be a finite connected graph, that is, a 1-dimensional CW complex. A spanning tree T of X is a connected subgraph that contains all vertices and no loops. The number of spanning trees of each X is denoted by k(X). A basic reference for graphs is [Ter11].

Suppose that X is the 8-graph, consisting of one vertex and two looped edges. Let s_1, s_2 denote the elements of the fundamental group $\pi_1(X)$ represented by the two loops. We consider a specific surjective homomorphism

$$\varphi: \pi_1(X) \to \mathbb{Z}; s_1 \mapsto 1, s_2 \mapsto 2.$$

The Z-cover $X_{\infty} \to X$ corresponding to Ker φ is so-called the Fibonacci tower. The adjacency matrix yields the Ihara zeta function and the Ihara polynomial $I(t) = 4 - (t + 1/t) - (t^2 + 1/t^2)$. We further put $J(t) := t^2 I(t)/(t-1)^2 = t^2 + 3t + 1$.

For each $n \in \mathbb{Z}_{>0}$, let $X_n \to X$ denote the $\mathbb{Z}/n\mathbb{Z}$ -subcover. Then, Pengo–Vallieres [PV25, Theorem 3.6] asserts that the number of spanning trees of X_n may be calculated by using the cyclic resultant $\operatorname{Res}(t^n - 1, J(t)) = \prod_{\zeta^n = 1} J(\zeta) \in \mathbb{Z}$ as

$$k(X_n) = k(X)n^{2-1} |\operatorname{Res}(t^n - 1, J(t))| / J(1).$$

On the other hand, p being a prime number, Kisilevsky [Kis97] and Ueki–Yoshizaki [UY25] proved that p-power-th cyclic resultant p-adically converges in the ring of p-adic integers $\mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$ and gave explicit formulae. For instanse, if $\Phi_m(t) \in \mathbb{Z}[t]$ denote the m-th cyclotomic polynomial and $f(t) \in \mathbb{Z}[t]$ satisfies $f(t) \equiv \Phi_m(t) \mod p$, then

$$\lim_{n \to \infty} \operatorname{Res}(t^{p^n} - 1, f(t)) = \Phi_m(1)$$

holds.

Combining the above, we obtain the following for the 8-graph X.

Theorem 1. The sequence $(k(X_{p^n}))_n$ converges in \mathbb{Z}_p . We have

$$\lim_{n \to \infty} k(X_{p^n})/p^n \in \mathbb{Q} \iff p = 2, 3, 5.$$

In addition, if we put $r_n := |\text{Res}(t^n - 1, J(t))|$, then we have

$$\lim_{n \to \infty} |r_{2^n}| = -3, \ \lim_{n \to \infty} |r_{3^n}| = 2, \ \lim_{n \to \infty} |r_{5^n}| = 0.$$

The non-5 part of $|r_{5^n}|$ is $|r_{5^n}|/5^{2n+1}$. Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \widehat{\mathbb{Q}_5}$ of an algebraic closure of \mathbb{Q} into the completion of an algebraic closure of the 5-adic number field. Let α, β denote the roots of J(t)

$$\lim_{n \to \infty} |r_{5^n}| / 5^{2n+1} = \frac{\log \alpha \log \beta}{5} \in \mathbb{Z}_5.$$

We may observe that these sequences converge quickly:

If $p = 2$,												
n	1	2	3	4			5	6				
$-\operatorname{Res}(t^{2^n} - 1, J(t))$	5	5 45 2205		4870845	0845 23		23725150497405					
$-\operatorname{Res}(t^{2^n} - 1, J(t)) \mod 2^n$	-3	-3	-3	-3		-	-3	-3				
If $p = 3$,												
n	1	2		3	4	5	6					
$\operatorname{Res}(t^{3^n} - 1, J(t))$	20 5	5780	192900)153620	•••							
$\operatorname{Res}(t^{3^n} - 1, J(t)) \mod 3^n$	2	2		2	2	2	2					
If $p = 5$,												
n	1		2			3			4	5	6	
$\operatorname{Res}(t^{5^n} - 1, J(t))$	$5^3 \ 5^5 \cdot 3001^2 \ 5^7 \cdot 3001^2 \cdot 158414167964045700001^2$										•	
$\frac{1}{5^{2n+1}} \operatorname{Res}(t^{5^n} - 1, J(t)) \mod \$$	$5^n \mid 1$		1			1			376	2876	15376	

References

- [Kis97] H. Kisilevsky, A generalization of a result of Sinnott, Pacific J. Math. (1997), no. Special Issue, 225–229, Olga Taussky-Todd: in memoriam. MR 1610867
- [KU25] Reo Kobayashi and Jun Ueki, The p-adic class numbers of \mathbb{Z}_p -covers of graphs, in preparation, 2025.
- [PV25] Riccardo Pengo and Daniel Vallières, Spanning trees in Z-covers of a finite graph and Mahler measures, J. Aust. Math. Soc. 118 (2025), no. 1, 108–144. MR 4851713
- [Ter11] Audrey Terras, Zeta functions of graphs, Cambridge Studies in Advanced Mathematics, vol. 128, Cambridge University Press, Cambridge, 2011, A stroll through the garden. MR 2768284
- [UY25] Jun Ueki and Hyuga Yoshizaki, The p-adic limits of class numbers in \mathbb{Z}_p -towers, to appear in Math. Proc. Cambridge Philos. Soc. (2025), preprint. arXiv:2210.06182.