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Weyl algebras are fundamental objects in ring theory that arise from various perspectives in mathe-
matics and physics, and the development of their theory is related to such names as Dirac, Heisenberg,
Littlewood, Weyl, Segal, Dixmier and Kashiwara. Their feature is capturing the noncommutativity of
differential operators with polynomial coefficients, which makes these algebras ubiquitous in abstract
algebra, noncommutative geometry, representation theory and quantum mechanics. The representa-
tion theory of Weyl algebras led to the development of the so-called algebraic analysis, an advanced
branch of algebra within whose framework several long-standing conjectures have been proven.
Following [1, 3], let K be a field of characteristic zero. The first Weyl algebra A1 is the associative

algebra over K generated by elements x and ∂ that satisfy the defining relation ∂x − x∂ = 1. The
Weyl algebra A1 is a central, simple, Noetherian, hereditary domain of Gelfand–Kirillov dimension
two which is canonically isomorphic to the ring of differential operators K[x][ ddx ] with coefficients from
the polynomial ring K[x]. The Bergman’s diamond lemma [2] allows one to easily show that the tuple
(xk∂l | k, l ∈ N0) is a basis of A1. The nth Weyl algebra An is the tensor product A1 ⊗ · · · ⊗ A1 of n
copies of the first Weyl algebra.
From the perspective of symmetry analysis of differential equations, the first and the second real

Weyl algebras arise as the algebras of linear generalized symmetries of the linear (1+1)-dimensional
heat equation ut = uxx and of the remarkable (1+2)-dimensional Fokker–Planck equation ut + xuy =
uxx, see [5] and [8], respectively. The above is only one way the close relationship between these two
equations manifests itself. This relationship was revealed in the course of extended symmetry analysis
of the latter and former equations in [5, 6, 7] and [4, 8], but it can in fact be embedded in a broader
framework.
For each n ∈ N, consider the class Un of (ultra)parabolic linear second-order partial differential

equations with 1 + n independent variables t, x1, …, xn and dependent variable u, where the corre-
sponding (symmetric) matrices of coefficients of second-order derivatives of the dependent variable u
are of rank one, and the number n+ 1 of independent variables is essential: none among them plays
the role of a parameter even up to their point transformations. The equation

Fn : ut + x1ux2 + · · ·+ xn−1uxn = ux1x1

belongs to the class Un. Notably, the equations F1 and F2 coincide with the above linear heat and
remarkable Fokker–Planck equations, respectively. The classes U1 and U2 coincide with the classes
of parabolic linear second-order partial differential equation with two independent variables and of
ultraparabolic linear second-order partial differential equations with three independent variables, re-
spectively.
In this talk, we present the results of our in-depth preliminary analysis of the properties of the

equations Fn within their respective classes Un. Among many surprising observations and conjectures,
there are the following:
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• The dimension of the essential Lie invariance algebra gessn of Fn is equal to 2n + 4, and this
algebra is isomorphic to the algebra sl(2,R) ∈ρ2n−1⊕ρ0 h(n,R). The Levi factor fn and the
(nil)radical rn of gessn are isomorphic to the real degree-two special linear algebra sl(2,R) and the
rank-n Heisenberg algebra h(n,R), respectively. Here ρm denotes the standard real irreducible
representation of sl(2,R) in the (m+ 1)-dimensional vector space.

• The dimension of gessn is maximal among those of the essential Lie invariance algebras of
equations from the class Un, and each equation whose essential Lie invariance algebra is of this
maximal dimension is reduced to Fn by a point transformation in the space R1+n

t,x1,...,xn
× Ru.

• The essential point-symmetry group Gessn of the equation Fn is isomorphic to the Lie group(
SL(2,R)⋉ϱ2n−1⊕ϱ0H(n,R)

)
×Z2, where H(n,R) denotes the rank-n Heisenberg group and ϱm

is the irreducible representation of the real degree-two special linear group SL(2,R) in Rm+1.
• A complete list of discrete point symmetry transformations of the equation Fn that are in-
dependent up to combining with each other and with continuous point symmetry transfor-
mations of this equation is exhausted by the single involution I alternating the sign of u,
I : (t, x1, . . . , xn, u) 7→ (t, x1, . . . , xn,−u). Thus, the quotient group of the complete point-
symmetry pseudogroup Gn of Fn with respect to its identity component is isomorphic to Z2.

• The algebra of canonical representatives of generalized symmetries of Fn is Σn = Λn ∈ Σ−∞
n .

Here Λn is the subalgebra of linear generalized symmetries of Fn, which is generated by acting
with the Lie-symmetry operators associated with the canonical basis of the complement of the
center ⟨u∂u⟩ in the (nil)radical rn of gessn on the elementary seed symmetry vector field u∂u,
and Σ−∞

n is the ideal associated with linear superposition of solutions of Fn.
• The algebra Λn is isomorphic to the Lie algebra A

(−)
n associated with the nth Weyl algebra

An.
• A generalized vector field is a master symmetry of Fn in the sense of the definition given in [7,
p. 315] if and only if up to a triviality equivalence relation, it is a generalized symmetry of Fn.

• The algebra Λn is two-generated as a Lie algebra, i.e., there is a pair of its elements such that
Λn coincides with its subalgebra containing all successive commutators (aka nonassociative
monomials) of these two elements.

This work introduces a substantial research program aimed at a deeper understanding of the symmetry
properties of linear second-order partial differential equations.
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