ON THE PRIME ENDS EXTENSION OF UNCLOSED INVERSE MAPPINGS

Victoria Desyatka (Zhytomyr Ivan Franko State University) *E-mail:* victoriazehrer@gmail.com

Zarina Kovba (Zhytomyr Ivan Franko State University) *E-mail:* victoriazehrer@gmail.com

Evgeny Sevost'yanov

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'yans'k) *E-mail:* esevostyanov2009@gmail.com

The following statements contain itself some results on prime end boundary extension of quasiconformal mappings.

Theorem A. Under a quasiconformal mapping f of a collared domain D_0 onto a domain D, there exists a one-to-one correspondence between the boundary points of D_0 and the prime ends of D. Moreover, the cluster set C(f,b), $b \in \partial D_0$, coincides with the impression I(P) of the corresponding prime end P of D (see [1, Theorem 4.1]).

Given $f: D \to D'$, we set $C(f, x) := \{ y \in \mathbb{R}^n : \exists x_k \in D : x_k \to x, f(x_k) \to y, k \to \infty \}$ and $C(f, \partial D) = \bigcup_{x \in \partial D} C(f, x)$.

Theorem B. Let $f : D \to \mathbb{R}^n$ be quasiregular mapping with $C(f, \partial D) \subset \partial f(D)$. If D is locally connected at a point $b \in \partial D$ and D' = f(D) is qc accessible at some point $y \in C(f, b)$, then $C(f, b) = \{y\}$ (see [2, Theorem 4.2]).

The goal of this abstract is to consider mappings which are not closed. Let $y_0 \in \mathbb{R}^n$, $0 < r_1 < r_2 < \infty$ and $A = A(y_0, r_1, r_2) = \{y \in \mathbb{R}^n : r_1 < |y - y_0| < r_2\}$. Given sets $E, F \subset \overline{\mathbb{R}^n}$ and a domain $D \subset \mathbb{R}^n$ we denote by $\Gamma(E, F, D)$ a family of all paths $\gamma : [a, b] \to \overline{\mathbb{R}^n}$ such that $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in D$ for $t \in (a, b)$. If $f : D \to \mathbb{R}^n$, $y_0 \in f(D)$ and $0 < r_1 < r_2 < d_0 = \sup_{y \in f(D)} |y - y_0|$, then by $\Gamma_f(y_0, r_1, r_2)$

we denote the family of all paths γ in D such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$. Let $Q : \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function. We say that f satisfies Poletsky inverse inequality at the point $y_0 \in f(D)$, if the relation

$$M(\Gamma_f(y_0, r_1, r_2)) \leqslant \int_{A(y_0, r_1, r_2) \cap f(D)} Q(y) \cdot \eta^n(|y - y_0|) \, dm(y)$$
(1)

holds for any Lebesgue measurable function $\eta: (r_1, r_2) \to [0, \infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) \, dr \ge 1 \,. \tag{2}$$

Recall that a mapping $f: D \to \mathbb{R}^n$ is called *discrete* if the pre-image $\{f^{-1}(y)\}$ of each point $y \in \mathbb{R}^n$ consists of isolated points, and *is open* if the image of any open set $U \subset D$ is an open set in \mathbb{R}^n . Later, in the extended space $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ we use the spherical (chordal) metric h (see [3, Definition 12.1]). Further, the closure \overline{A} and the boundary ∂A of the set $A \subset \overline{\mathbb{R}^n}$ we understand relative to the chordal metric h in $\overline{\mathbb{R}^n}$.

The boundary of D is called *weakly flat* at the point $x_0 \in \partial D$, if for every P > 0 and for any neighborhood U of the point x_0 there is a neighborhood $V \subset U$ of the same point such that $M(\Gamma(E, F, D)) > P$ for any continua $E, F \subset D$ such that $E \cap \partial U \neq \emptyset \neq E \cap \partial V$ and $F \cap \partial U \neq \emptyset \neq F \cap \partial V$. The boundary of D is called weakly flat if the corresponding property holds at any point of the boundary D. Consider the following definition, see e.g. [1]. The boundary of a domain D in \mathbb{R}^n is said to be *locally quasiconformal* if every $x_0 \in \partial D$ has a neighborhood U that admits a quasiconformal mapping φ onto the unit ball $\mathbb{B}^n \subset \mathbb{R}^n$ such that $\varphi(\partial D \cap U)$ is the intersection of \mathbb{B}^n and a coordinate hyperplane. The sequence of cuts $\sigma_m, m = 1, 2, \ldots$, is called *regular*, if $\overline{\sigma_m} \cap \overline{\sigma_{m+1}} = \emptyset$ for $m \in \mathbb{N}$ and, in addition, $d(\sigma_m) \to 0$ as $m \to \infty$. If the end K contains at least one regular chain, then K will be called *regular*. We say that a bounded domain D in \mathbb{R}^n is *regular*, if D can be quasiconformally mapped to a domain with a locally quasiconformal boundary whose closure is a compact in \mathbb{R}^n , and, besides that, every prime end in D is regular. Note that space $\overline{D}_P = D \cup E_D$ is metric, which can be demonstrated as follows. If $g: D_0 \to D$ is a quasiconformal mapping of a domain D_0 with a locally quasiconformal boundary whose closure is a compact in \mathbb{R}^n , and, besides that, every prime end in D is regular. Note that space $\overline{D}_P = D \cup E_D$ is metric, which can be demonstrated as follows. If $g: D_0 \to D$ is a quasiconformal mapping of a domain D_0 with a locally quasiconformal boundary whose closure is a compact in \mathbb{R}^n , and locally quasiconformal boundary whose of a domain D_0 with a locally quasiconformal boundary boundary onto some domain D, then for $x, y \in \overline{D}_P$ we put:

$$\rho(x,y) := |g^{-1}(x) - g^{-1}(y)|, \qquad (3)$$

where the element $g^{-1}(x)$, $x \in E_D$, is to be understood as some (single) boundary point of the domain D_0 . The specified boundary point is unique, see e.g. [1, Theorem 4.1]. It is easy to verify that ρ in (3) is a metric on \overline{D}_P .

Let $E \subset \overline{D}$. We say that D is finitely connected at the point $z_0 \in E$, if for each neighborhood \widetilde{U} of z_0 there is a neighborhood $\widetilde{V} \subset \widetilde{U}$ of z_0 such that $(D \cap \widetilde{V}) \setminus E$ consists of finite number of components. We say that D is finitely connected on E, if D is finitely connected at every point $z_0 \in E$. The following theorem is true.

Theorem 1. Let D and D' be domains in \mathbb{R}^n , $n \ge 2$, and let D be a domain with a weakly flat boundary. Suppose that f is open discrete mapping of D onto D' satisfying the relation (1) at each point $y_0 \in \overline{D'}$. In addition, assume that the following conditions are fulfilled:

1) for each point $y_0 \in \partial D'$ there is $0 < r_0 := \sup_{y \in D'} |y - y_0|$ such that for any $0 < r_1 < r_2 < r_0 := \sup_{y \in D'} |y - y_0|$ there exists a set $E \subset [r_1, r_2]$ of positive linear Lebesgue measure such that Q is integrable

 $\sup_{y \in D'} |y - y_0|$ there exists a set $E \subset [r_1, r_2]$ of positive linear Lebesgue measure such that Q is integrable on $S(y_0, r)$ for $r \in E$;

2) D' is a regular domain and, in addition, D' is finitely connected on $C(f, \partial D) \cap D'$, i.e., for each point $z_0 \in C(f, \partial D) \cap D'$ and for any neighborhood U of this point there exists a neighborhood $V \subset U$ of this point such that the set $V \setminus C(f, \partial D)$ consists of a finite number of components;

3) the set $f^{-1}(C(f, \partial D) \cap D')$ is nowhere dense in D;

4) the set D' is finitely connected in $E_{D'} := \overline{D'}_P \setminus D'$, i.e., for any $P_0 \in E_{D'}$ and any neighborhood U of P_0 in $\overline{D'}_P$ there is a neighborhood $V \subset U$ such that $V \setminus C(f, \partial D)$ consists of finite number of components.

Then the mapping f has a continuous extension $\overline{f}: \overline{D} \to \overline{D'}_P$ by the metric ρ defined in (3). Moreover, $\overline{f}(\overline{D}) = \overline{D'}_P$.

References

- [1] Näkki R. Prime ends and quasiconformal mappings. J. Anal. Math., 35: 13-40, 1979.
- [2] Srebro U. Conformal capacity and quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I. Math., 529: 1–8, 1973.
- [3] Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer-Verlag, 1971.