Homotopy properties of Morse functions on non-orientable surfaces

Iryna Kuznietsova

(Institute of Mathematics, NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024 Ukraine) *E-mail:* kuznietsova@imath.kiev.ua

> Sergiy Maksymenko (Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* maks@imath.kiev.ua

Let M be a smooth compact surface and P is a real line \mathbb{R} or a circle S^1 . Denote by $\mathcal{F}(M, P)$ the space of smooth functions $f \in C^{\infty}(M, P)$ satisfying the following conditions:

- 1) the function f takes constant value at ∂M and has no critical point in ∂M ;
- 2) for every critical point z of f there is a local presentation $f_z \colon \mathbb{R}^2 \to \mathbb{R}$ of f near z such that f_z is a homogeneous polynomial $\mathbb{R}^2 \to \mathbb{R}$ without multiple factors.

Let X be a closed subset of M. Denote by $\mathcal{D}(M, X)$ the group of C^{∞} -diffeomorphisms of M fixed on X, that acts on the space of smooth functions $C^{\infty}(M, P)$ by the rule: $(f, h) \mapsto f \circ h$, where $h \in D(M, X), f \in C^{\infty}(M, P)$.

Let $\mathcal{O}(f, X) = \{f \circ h \mid h \in D(M, X) \text{ be orbit of } f \text{ with respect to the action above.}$

Precise algebraic structure of such orbits for oriented surfaces was described in [1]. In particular, the following theorem holds.

Theorem 1. [1] Let M be a connected compact oriented surface except 2-sphere and 2-torus and let $f \in \mathcal{F}(M, P)$. Then $\pi_1 \mathcal{O}(f, \partial M) \in \mathcal{G}$, where \mathcal{G} is a minimal class of groups satisfying the following conditions:

1) $1 \in \mathcal{G}$; 2) if $A, B \in \mathcal{G}$, then $A \times B \in \mathcal{G}$; 3 if $A \in \mathcal{G}$ and $n \ge 1$, then $A \wr_n \mathbb{Z} \in \mathcal{G}$.

Definition 2. Let G, H be groups, $m \in \mathbb{Z}$ and $\gamma: H \to H$ be automorphism of order 2. Define the automorphism $\phi: G^{2m} \times H^m \to G^{2m} \times H^m$ by the formula

 $\phi(g_0,\ldots,g_{2m-1},h_0,\ldots,h_{m-1})=(g_{2m-1},g_0,\ldots,g_{2m-2},h_1,h_2,\ldots,h_{m-1},\gamma(h_0)).$

This automorphism ϕ generates homomorphism $\phi' \colon \mathbb{Z} \to G^{2m} \times H^m$. The corresponding semidirect product $G^{2m} \times H^m \rtimes_{\phi'} \mathbb{Z}$ will be denoted $(G, H) \wr_{\gamma, m} \mathbb{Z}$.

Theorem 3. [2] Let M be a Möbius band. Then for every $f \in \mathcal{F}(M, P)$ either

(1) exist groups $A, G, H \in \mathcal{G}$, an authmorphism $\gamma \colon H \to H$ of order 2 and $m \geq 1$, such that

$$\pi_1 \mathcal{O}(f, \partial M) \cong A \times (G, H) \wr_{\gamma, m} \mathbb{Z},$$

(2) or there exist groups $A, G \in \mathcal{G}$ and odd number $m \geq 1$ such that

$$\pi_1 \mathcal{O}(f, \partial M) \cong A \times G \wr_b \mathbb{Z}.$$

Conversely, for every such tuple (A, G, m) or (A, G, H, γ, m) there exists $f \in \mathcal{F}(M, P)$ such that we have the corresponding isomorphism.

It was shown in [1] that if M has negative Euler characterictic, then fundamental groups of orbits of functions in $\mathcal{F}(M, P)$ are direct products of such groups for functions only on cylinders, disks and Möbius bands.

References

- [1] Sergiy Maksymenko. Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. *Topology and its Applications*, volume 282, 2020.
- [2] Iryna Kuznietsova, Sergiy Maksymenko. Deformational symmetries of smooth functions on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 1 - 43, 2025.