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We shall follow the terminology of [l]. By w we denote the set of all non-negative integers.

The bicyclic monoid €'(p, q) is the semigroup with the identity 1 generated by two elements p and
q subjected only to the condition pg = 1. Any element of €(p,q) has the unique representation b‘a’,
i,7 € w. In [3] the following anti-isomorphic subsemigroups of the bicyclic monoid

i (a,b) = {b'al € €(a,b):i<j,i,j €w}
and o

€_(a,b) = {blaj €€(a,b):i>7,4,j€ w}
are studied. All injective endomorphism of ¢4 (a,b) are described in [2].

Let S be a semigroup with the non-empty set of idempotent E(S). An endomorphism « of S is
said to be E-endomorphism if (s)a € E(S) for all s € S.

Theorem 1. Let a be a monoid endomorphism of the semigroup ¢4 (a,b). Then the following condi-
tions are equivalent:
(1) « is an E-endomorphism;
(2) there ewists a non-idempotent element bia’ of €, (a,b) such that (b'a’)a is an idempotent of
Cng (CL, b) ;
(3) the image (€ (a,b))c is a finite subset of €4 (a,b).

By wmax we denote the set w with the semilattice operation n - m = max{n,m}, n,m € w. We
extend the semilattice operation of wpax onto w* = w U {oo} with co ¢ w in the following way

n-00=00"1=00" 00 = 00, forall n € w.

The set w* with so defined semilattice operation we denote by w;

max-*

An endomorphism ¢ of the semilattice wy,, . is called bounded if there exists n. € w such that
(x)e < neforallx € w,,. It is obvious that the composition of any two bounded endomorphisms of the
semilattice wy . is a bounded endomorphism. By €ndy(w}, ) we denote the semigroup of all bounded
endomorphisms of semilattice w},. and by €ndg(%,(a,b)) the semigroup of E-endomorphisms of

%4_ (CL, b)
Theorem 2. The semigroups Emdy, (wy.) and EMg(Cs(a,b)) are isomorphic.
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