ON E-ENDOMORPHISMS OF THE UPPER SUBSEMIGROUP OF THE BICYCLIC MONOID

Sher-Ali Penza

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) *E-mail:* SHER-ALI.PENZA@lnu.edu.ua

Oleg Gutik

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) *E-mail:* oleg.gutik@lnu.edu.ua

We shall follow the terminology of [1]. By ω we denote the set of all non-negative integers.

The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. Any element of $\mathscr{C}(p,q)$ has the unique representation $b^i a^j$, $i, j \in \omega$. In [3] the following anti-isomorphic subsemigroups of the bicyclic monoid

$$\mathscr{C}_{+}(a,b) = \left\{ b^{i}a^{j} \in \mathscr{C}(a,b) \colon i \leq j, \, i, j \in \omega \right\}$$

and

 $\mathscr{C}_{-}(a,b) = \left\{ b^{i}a^{j} \in \mathscr{C}(a,b) \colon i \geqslant j, \, i, j \in \omega \right\}$

are studied. All injective endomorphism of $\mathscr{C}_+(a, b)$ are described in [2].

Let S be a semigroup with the non-empty set of idempotent E(S). An endomorphism α of S is said to be *E*-endomorphism if $(s)\alpha \in E(S)$ for all $s \in S$.

Theorem 1. Let α be a monoid endomorphism of the semigroup $\mathscr{C}_+(a,b)$. Then the following conditions are equivalent:

- (1) α is an *E*-endomorphism;
- (2) there exists a non-idempotent element $b^i a^j$ of $\mathscr{C}_+(a,b)$ such that $(b^i a^j)\alpha$ is an idempotent of $\mathscr{C}_+(a,b)$;
- (3) the image $(\mathscr{C}_+(a,b))\alpha$ is a finite subset of $\mathscr{C}_+(a,b)$.

By ω_{\max} we denote the set ω with the semilattice operation $n \cdot m = \max\{n, m\}, n, m \in \omega$. We extend the semilattice operation of ω_{\max} onto $\omega^* = \omega \cup \{\infty\}$ with $\infty \notin \omega$ in the following way

$$n \cdot \infty = \infty \cdot n = \infty \cdot \infty = \infty$$
, for all $n \in \omega$.

The set ω^* with so defined semilattice operation we denote by ω^*_{\max} .

An endomorphism ε of the semilattice ω_{\max}^* is called *bounded* if there exists $n_{\varepsilon} \in \omega$ such that $(x)\varepsilon \leq n_{\varepsilon}$ for all $x \in \omega_{\max}^*$. It is obvious that the composition of any two bounded endomorphisms of the semilattice ω_{\max}^* is a bounded endomorphism. By $\mathfrak{End}_{\mathbf{b}}(\omega_{\max}^*)$ we denote the semigroup of all bounded endomorphisms of semilattice ω_{\max}^* and by $\mathfrak{End}_{\mathbf{E}}(\mathscr{C}_+(a,b))$ the semigroup of *E*-endomorphisms of $\mathscr{C}_+(a,b)$.

Theorem 2. The semigroups $\mathfrak{End}_{\mathbf{b}}(\omega_{\max}^*)$ and $\mathfrak{End}_{\mathbf{E}}(\mathscr{C}_+(a,b))$ are isomorphic.

References

- A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- [2] O. Gutik and Sh.-A. Penza, On the semigroup of monoid endomorphisms of the semigroup C₊(a, b), Algebra Discr. Math. 38 (2024). no. 2, 233–247.
- [3] S. O. Makanjuola and A. Umar, On a certain sub semigroup of the bicyclic semigroup, Commun. Algebra 25 (1997), no. 2, 509-519.