ON EXISTENCE OF CONTINUATIONS FOR DIFFERENT TYPES OF METRICS

Evgeniy Petrov

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk, Ukraine) *E-mail:* eugeniy.petrov@gmail.com

The problems of continuation of a partially defined metric and a partially defined ultrametric were considered in [1] and [2], respectively. Using the language of graph theory we generalize the criteria of existence of continuation obtained in these papers. For these purposes we use the concept of a triangle function introduced by M. Bessenyei and Z. Páles in [3], which gives a generalization of the triangle inequality in metric spaces. The obtained result allows us to get criteria of the existence of continuation for a wide class of semimetrics including metrics, ultrametrics, semimetrics with power triangle inequality, etc.

Let X be a nonempty set. Recall that a mapping $d: X \times X \to \mathbb{R}^+$, $\mathbb{R}^+ = [0, \infty)$, is a *metric* if for all $x, y, z \in X$ the following axioms hold: (i) $(d(x, y) = 0) \Leftrightarrow (x = y)$, (ii) d(x, y) = d(y, x), (iii) $d(x, y) \leq d(x, z) + d(z, y)$. The pair (X, d) is called a *metric space*. If only axioms (i) and (ii) hold then the pair (X, d) is called a *semimetric space*. We shall say that d is a *pseudosemimetric* if only axiom (ii) and condition d(x, x) = 0 hold. In this case the pair (X, d) will be called a *pseudosemimetric space*.

Definition 1. ([3]) Consider a pseudosemimetric space (X, d). We shall say that $\Phi \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ is a *triangle function* for d if Φ is symmetric and monotone increasing in both of its arguments, satisfies $\Phi(0,0) = 0$ and, for all $x, y, z \in X$, the generalized triangle inequality

$$d(x,y) \leqslant \Phi(d(x,z),d(y,z))$$

holds. We also shall say that d is a Φ -pseudosemimetric if Φ is a triangle function for d.

Let $n \in \mathbb{N}$. For every triangle function Φ consider a function $\Phi^* \colon \mathbb{R}^n_+ \to \mathbb{R}^+$ of n variables, defined as

$$\Phi^*(x_1, \dots, x_n) = \begin{cases} x_1, & \text{if } n = 1, \\ \Phi(x_1, x_2), & \text{if } n = 2, \\ \Phi(x_1, \Phi(x_2, \Phi(x_3, \dots \Phi(x_{n-2}, \Phi(x_{n-1}, x_n))))), & \text{if } n \ge 3. \end{cases}$$

It is clear that Φ^* is monotone increasing in all of its variables as well as Φ .

Recall that a graph G is an ordered pair (V, E) consisting of a set V = V(G) of vertices and a set E = E(G) of edges. A graph G = (V, E) together with a weight $w \colon E(G) \to \mathbb{R}^+$ is called a weighted graph. Let (G, w) be a weighted graph and let u, v be vertices belonging to a connected component of G. Let us denote by $\mathcal{P}_{u,v} = \mathcal{P}_{u,v}(G)$ the set of all paths joining u and v in G. For the path $P \in \mathcal{P}_{u,v}$ define the Φ -weight of this path by

$$w_{\Phi}(P) = \begin{cases} 0, & \text{if } E(P) = \emptyset\\ \Phi^*(w(e_1), ..., w(e_n)), & \text{otherwise,} \end{cases}$$

where $e_1, ..., e_n$ are all edges of the path P. Write

$$d_{\Phi}^{w}(u,v) = \inf\{w_{\Phi}(P) \colon P \in \mathcal{P}_{u,v}\}.$$

In the case $\Phi(x, y) = x + y$ for the connected graph G the function d_{Φ}^{w} is a shortest-path pseudometric [1] on the set V(G) and in the case $\Phi(x, y) = \max\{x, y\}$ it is a subdominant pseudoultrametric [2].

In the next lemma and further we identify a pseudosemimetric space (X, d) with the complete weighted graph $(G, w_d) = (G(X), w_d)$ having V(G) = X and satisfying the equality

$$w_d(\{x,y\}) = d(x,y)$$

for every pair of different points $x, y \in X$.

Lemma 2. ([4]) Let (X, d) be a pseudosemimetric space with the triangle function Φ . Then for every cycle $C \subseteq G(X)$ and for every $e \in E(C)$ the inequality $w_d(e) \leq w_{\Phi}(C \setminus e)$ holds, where $C \setminus e$ is a path obtained from the cycle C by the removal of the edge e.

We are interested in the following question. Let (G, w) be a weighted graph. Does there exist a Φ -pseudosemimetric $d: V(G) \times V(G) \to \mathbb{R}^+$ such that the given weight $w: E(G) \to \mathbb{R}^+$ has a continuation to d? I.e., the equality

$$w(\{u,v\}) = d(u,v)$$

holds for all $\{u, v\} \in E(G)$. If such a continuation exists, then we say that w is a Φ -pseudosemimetrizable weight.

Theorem 3. ([4]) Let (G, w) be a weighted graph and let Φ be a continuous in both variables triangle function. The following statements are equivalent.

- (i) The weight w is Φ -pseudosemimetrizable.
- (ii) The equality $w(\{u, v\}) = d_{\Phi}^w(u, v)$ holds for all $\{u, v\} \in E(G)$.
- (iii) For every cycle $C \subseteq G$ and for every $e \in C$ the inequality $w(e) \leq w_{\Phi}(C \setminus e)$ holds, where $C \setminus e$ is a path obtained from C by the removal of the edge e.

Corollary 4. ([4]) Let (G, w) be a weighted graph. Then the corresponding statements are equivalent.

- (i₁) The weight w is pseudometrizable, i.e., $\Phi(x, y) = x + y$.
- (i₂) For every cycle $C \subseteq G$ the following inequality holds:

$$2 \max_{e \in E(C)} w(e) \leqslant \sum_{e \in C} w(e).$$

- (*ii*₁) The weight w is pseudoultrametrizable, i.e., $\Phi(x, y) = \max\{x, y\}$.
- (ii) For every cycle $C \subseteq G$ there exist at least two different edges $e_1, e_2 \in E(C)$ such that

$$w(e_1) = w(e_2) = \max_{e \in E(C)} w(e)$$

- (iii) The weight w is Φ -pseudosemimetrizable with $\Phi(x,y) = (x^p + y^p)^{\frac{1}{p}}, p > 0.$
- (iii₂) For every cycle $C \subseteq G$ and every $e \in C$ the following inequality holds:

$$w(e) \leqslant \left(\sum_{\tilde{e} \in C \setminus e} w^p(\tilde{e})\right)^{\frac{1}{p}}$$

- (iv₁) The weight w is Φ -pseudosemimetrizable with $\Phi(x, y) = \varphi^{-1}(\varphi(x) + \varphi(y))$, where $\varphi : [0, \infty) \rightarrow [0, \infty)$ is a homeomorphism.
- (iv_2) For every cycle $C \subseteq G$ and every $e \in C$ the following inequality holds:

$$w(e) \leqslant \varphi^{-1} \left(\sum_{\tilde{e} \in C \setminus e} \varphi(w(\tilde{e})) \right).$$

References

- [1] O. Dovgoshey, O. Martio and M. Vuorinen. Metrization of weighted graphs. Ann. Comb., 17: 455–476, 2013.
- [2] A. A. Dovgoshey and E. A. Petrov. Subdominant pseudoultrametric on graphs. Sb. Math., 204: 1131–1151, 2013.
- [3] M. Bessenyei and Z. Páles. A contraction principle in semimetric spaces. J. Nonlinear Convex Anal., 18: 515–524, 2017.
- [4] E. Petrov. The existence of continuations for different types of metrics. Acta Math. Hungar., 17: 164–176, 2024.