Nataliya Ilkevych

(Zhytomyr Ivan Franko State University) E-mail: ilkevych1980@gmail.com

Denys Romash

(Zhytomyr Ivan Franko State University)

E-mail: dromash@num8erz.eu

Evgeny Sevost'yanov

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'yans'k)

 $E ext{-}mail:$ esevostyanov2009@gmail.com

Everywhere further, (X,d,μ) and (X',d',μ') are metric spaces with metrics d and d' and locally finite Borel measures μ and μ' , correspondingly. Let G and G' be domains with finite Hausdorff dimensions α and $\alpha' \geqslant 2$ in (X,d,μ) and (X',d',μ') , respectively. For $x_0 \in X$ and r > 0, $B(x_0,r)$ and $S(x_0,r)$ denote the ball $\{x \in X : d(x,x_0) < r\}$ and the sphere $\{x \in X : d(x,x_0) = r\}$, correspondingly. Put

$$d(E) := \sup_{x,y \in E} d(x,y).$$

Given $0 < r_1 < r_2 < \infty$, denote $A = A(x_0, r_1, r_2) = \{x \in X : r_1 < d(x, x_0) < r_2\}$. Let $p \ge 1$ and $q \ge 1$, and let $Q : G \to [0, \infty]$ be a measurable function. Similarly to [1, Ch. 7], a homeomorphism $f : G \to G'$ is called a ring Q-homeomorphism at a point $x_0 \in \overline{G}$ with respect to (p, q)-moduli, if the inequality

$$M_p(f(\Gamma(S(x_0, r_1), S(x_0, r_2), A(x_0, r_1, r_2)))) \leqslant \int_{A(x_0, r_1, r_2) \cap G} Q(x) \cdot \eta^q(d(x, x_0)) d\mu(x)$$
 (1)

holds for all $0 < r_1 < r_2 < r_0 := d(G)$ and each measurable function $\eta: (r_1, r_2) \to [0, \infty]$ with

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1 . \tag{2}$$

We say that $f: G \to G'$ is a ring Q-homeomorphism at a point $x_0 \in \overline{G}$, if the latter is true for $p = \alpha'$ and $q = \alpha$. For $X = X' = \mathbb{R}^n$, $n \ge 2$, we set d(x, y) = d'(x, y) = |x - y|, and $\mu = \mu' = m$, where m is the Lebesgue measure. Due to [2], a domain D in \mathbb{R}^n is called a quasiextremal distance domain (a QED-domain for short) if

$$M(\Gamma(E, F, \mathbb{R}^n)) \leqslant A \cdot M(\Gamma(E, F, D)) \tag{3}$$

for some finite number $A \ge 1$ and all continua E and F in D. In the same way, one can define quasiextremal distance domains in an arbitrary metric measure space.

Given a compact set K in a domain D, we set $d(K, \partial D) = \inf_{x \in K, y \in \partial D} d(x, y)$. If $\partial D = \emptyset$, we set $d(K, \partial D) = \infty$.

Given a domain D in \mathbb{R}^n , $n \geq 2$, a Lebesgue measurable function $Q: D \to [0, \infty]$, a compact set $K \subset D$ and numbers $A \geq 1, \delta > 0$ denote by $\mathfrak{F}_{K,Q}^{A,\delta}(D)$ a family of all mappings $f: D \to \mathbb{R}^n$ satisfying the relations (1)–(2) at any point $x_0 \in D$ with d(x,y) = d'(x,y) = |x-y| and $\mu = \mu' = m$, where m is the Lebesgue measure, such that $D_f := f(D)$ is a QED-domain with A in (3) and, in addition, $d(f(K), \partial D_f) \geq \delta$. The following result holds.

Theorem 1. If $Q \in L^1(D)$, then there exist constants $C, C_1 > 0$ such that

$$|f(x) - f(y)| \ge C_1 \cdot \exp\left\{-\frac{\|Q\|_1 A}{C|x - y|^n}\right\}$$
 (4)

for all $x, y \in K$ and every $f \in \mathfrak{F}_{K,Q}^{A,\delta}(D)$.

Theorem 1 admits an analogue in metric spaces, which we will now formulate.

Let X be a metric space. We say that the condition of the *complete divergence of paths* is satisfied in $D \subset X$ if for any different points y_1 and $y_2 \in D$ there are some $w_1, w_2 \in \partial D$ and paths $\alpha_2 : (-2, -1] \to D$, $\alpha_1 : [1, 2) \to D$ such that 1) α_1 and α_2 are subpaths of some geodesic path $\alpha : [-2, 2] \to X$, that is, $\alpha_2 := \alpha|_{(-2, -1]}$ and $\alpha_1 := \alpha|_{[1, 2)}$; 2) 2) the geodesic path α joins the points w_2, y_2, y_1 and w_1 such that $\alpha(-2) = w_2, \alpha(-1) = y_2, \alpha(1) = y_1, \alpha(2) = w_1$.

Note that the condition of the complete divergence of the paths is satisfied for an arbitrary bounded domain D' of the Euclidean space \mathbb{R}^n . Let (X,μ) be a metric space with measure μ and of Hausdorff dimension n. For each real number $n \geq 1$, we define the Loewner function $\Phi_n : (0,\infty) \to [0,\infty)$ on X as

$$\Phi_n(t) = \inf\{M_n(\Gamma(E, F, X)) : \Delta(E, F) \leqslant t\}, \tag{5}$$

where the infimum is taken over all disjoint nondegenerate continua E and F in X and

$$\Delta(E, F) := \frac{\operatorname{dist}(E, F)}{\min\{d(E), d(F)\}}.$$

A pathwise connected metric measure space (X, μ) is said to be a *Loewner space* of exponent n, or an n-Loewner space, if the Loewner function $\Phi_n(t)$ is positive for all t > 0 (see [1, Section 2.5] or [3, Ch. 8]). Observe that, \mathbb{R}^n and $\mathbb{B}^n \subset \mathbb{R}^n$ are Loewner spaces (see [3, Theorem 8.2 and Example 8.24(a)]).

Given a domain D in X, $n \ge 2$, a measurable function $Q: D \to [0, \infty]$, a compact set $K \subset D$ and numbers $A, \delta > 0$ denote by $\mathfrak{F}_{K,Q}^{A,\delta}(D)$ a family of all mappings $f: D \to X'$ satisfying the relations (1)–(2) at any point $x_0 \in D$, such that $D_f := f(D)$ is a compact QED-subdomain of X' with A in (3) and, in addition, $d'(f(K), \partial D_f) \ge \delta$. The following result holds.

Theorem 2. Let (X, d, μ) and (X', d', μ') be metric spaces with metrics d and d' and locally finite Borel measures μ and μ' , correspondingly. Assume that, the condition of the complete divergence of paths is satisfied in a domain $D \subset X$. Let X' be a n-Loewner space in which the relation $\mu(B_R) \leq C^*R^n$ holds for some constant $C^* \geq 1$, for some exponent n > 0 and for all closed balls B_R of radius R > 0. If $Q \in L^1(D)$, then there exist constants $C, C_1 > 0$ such that

$$d'(f(x), f(y)) \ge C_1 \cdot \exp\left\{-\frac{\|Q\|_1 A}{C d^n(x, y)}\right\}$$
 (6)

for all $x, y \in K$ and every $f \in \mathfrak{F}_{K,Q}^{A,\delta}(D)$.

REFERENCES

- [1] Martio O., Ryazanov V., Srebro U. and Yakubov E. *Moduli in Modern Mapping Theory*. Springer Science + Business Media, LLC: New York, 2009.
- [2] Gehring F.W., Martio O. Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math., 45: 181–206, 1985.
- [3] Heinonen J., Lectures on Analysis on metric spaces. Springer Science+Business Media: New York, 2001.
- [4] Ilkevych N., Romash D., Sevost'yanov E. On lower distance estimates of mappings in metric spaces. *Rendiconti del Circolo Matematico di Palermo Series* 2 (in print).