ON FLOATING BODIES AND RELATED TOPICS

Dmitry Ryabogin

(Kent, OH, 1300, Lester A Lefton Esplanade, Kent, OH 44243) *E-mail:* ryabogin@math.kent.edu

This is a joint work with Maria Alfonseca, Fedor Nazarov, Alina Stancu and Vlad Yaskin.

Let K be a convex body in \mathbb{R}^2 . For every $\theta \in \mathbb{R}$ and the corresponding unit vector $e(\theta) = (\cos \theta, \sin \theta)$ and for every $t \in \mathbb{R}$, define the half-planes

$$W^+(\theta, t) = \{x : \langle x, e(\theta) \rangle \ge t\}$$
 and $W^-(\theta, t) = \{x : \langle x, e(\theta) \rangle \le t\}.$

If $0 < \mathcal{D} < 1$, then for every $\theta \in \mathbb{R}$, there is a unique $t(\theta)$ such that

$$\operatorname{vol}_2(W^+(\theta, t(\theta)) \cap K) = \mathcal{D}\operatorname{vol}_2(K).$$

The corresponding convex body of flotation $K^{\mathcal{D}}$ is defined as

$$K^{\mathcal{D}} = \bigcap_{\theta \in \mathbb{R}} W^{-}(\theta, t(\theta)).$$

We investigate the homothety conjecture for convex bodies of flotation of planar domains. We show that there is a density close to $\frac{1}{2}$ for which there is a body K different from an ellipse with the property that $K^{\mathcal{D}}$ is homothetic to K.

References

[1], Two results on the homothety conjecture for convex bodies of flotation on the plane, Revista de la Unión Matemática Argentina (2025).