CATEGORICAL VERSION OF SHILOV'S THEOREM ON CLOSED EQUIVALENCE RELATIONS

Roman Skurikhin

(V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine) *E-mail:* romasku1350gmail.com

Sergiy Gefter

(B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine)

E-mail: gefter@ilt.kharkov.ua

Eugene Karolinsky

(V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine) *E-mail:* karolinsky@karazin.ua

Let X be a compact Hausdorff topological space, A = C(X), and let B be a closed self-adjoint subalgebra of the algebra A. Then the classic Shilov's theorem says that equivalence relation R_B on the space X, defined by the formula:

$$R_B = \{(x, y) \in X \times X : \forall b \in B, \ b(x) = b(y)\}$$

is a closed equivalence relation, and B is the algebra of functions invariant under R_B .

This work explores the relationship between the category of closed equivalence relations on compact topological spaces and the category of pairs of commutative C^* -algebras. It is shown that these categories are equivalent.

To describe this equivalence, the functors C and Σ are constructed. The functor C assigns to an object (X, R) in the category of closed equivalence relations the pair $(C(X), B_R)$, where C(X) is the algebra of continuous functions on X and B_R is the algebra of invariant functions with respect to R. The functor Σ assigns to an object (A, B) in the category of pairs of commutative C^* -algebras the spectrum of this pair, that is spectrum $\Sigma(A)$ of the algebra A and a natural equivalence relation on $\Sigma(A)$.

References

- [1] Gel'fand S. I., Manin Y. I. Methods of homological algebra. 2nd ed. Berlin : Springer, 2003. P. 372.
- [2] Rudin W. Functional analysis. 2nd ed. New York: McGraw-Hill, 1991. P. 424.
- [3] Shilov G. Ideals and subrings of the ring of continuous functions. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 1939. Vol. 22. P. 7–10.