On convergence of homeomorphisms with inverse Poletsky inequality

Evgeny Sevost'yanov

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'yans'k)

E-mail: esevostyanov2009@gmail.com

Valery Targonskii

(Zhytomyr Ivan Franko State University)

E-mail: w.targonsk@gmail.com

Below dm(x) denotes the element of the Lebesgue measure in \mathbb{R}^n . Everywhere further the boundary ∂A of the set A and the closure \overline{A} should be understood in the sense of the extended Euclidean space $\overline{\mathbb{R}^n}$. Recall that, a Borel function $\rho:\mathbb{R}^n\to[0,\infty]$ is called admissible for the family Γ of paths γ in \mathbb{R}^n , if the relation

$$\int_{\gamma} \rho(x) |dx| \geqslant 1 \tag{1}$$

holds for all (locally rectifiable) paths $\gamma \in \Gamma$. In this case, we write: $\rho \in \operatorname{adm} \Gamma$. The modulus of Γ is defined by the equality

$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^n(x) \, dm(x) \,. \tag{2}$$

Let $y_0 \in \mathbb{R}^n$, $0 < r_1 < r_2 < \infty$ and

$$A = A(y_0, r_1, r_2) = \{ y \in \mathbb{R}^n : r_1 < |y - y_0| < r_2 \} .$$
 (3)

Given $x_0 \in \mathbb{R}^n$, we put $B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}$, $\mathbb{B}^n = B(0, 1)$, $S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}$ $|x-x_0|=r$. A mapping $f:D\to\mathbb{R}^n$ is called discrete if the pre-image $\{f^{-1}(y)\}$ of any point $y\in\mathbb{R}^n$ consists of isolated points, and open if the image of any open set $U \subset D$ is an open set in \mathbb{R}^n . Given sets $E, F \subset \overline{\mathbb{R}^n}$ and a domain $D \subset \mathbb{R}^n$ we denote by $\Gamma(E, F, D)$ the family of all paths $\gamma: [a, b] \to \overline{\mathbb{R}^n}$ such that $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in D$ for $t \in (a,b)$. Given a mapping $f: D \to \mathbb{R}^n$, a point $y_0 \in \overline{f(D)} \setminus \{\infty\}$, and $0 < r_1 < r_2 < r_0 = \sup_{y \in f(D)} |y - y_0|$, we denote by $\Gamma_f(y_0, r_1, r_2)$ a family of all

paths γ in D such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$. Let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function. We say that f satisfies the inverse Poletsky inequality at a point $y_0 \in \overline{f(D)} \setminus \{\infty\}$ if the relation

$$M(\Gamma_f(y_0, r_1, r_2)) \leqslant \int_{A(y_0, r_1, r_2) \cap f(D)} Q(y) \cdot \eta^n(|y - y_0|) \, dm(y)$$
(4)

holds for any Lebesgue measurable function $\eta:(r_1,r_2)\to[0,\infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1. \tag{5}$$

The relations (4) are proved for different classes of mappings, see e.g. [1]. Set $q_{y_0}(r) = \frac{1}{\omega_{n-1}r^{n-1}} \int_{S(y_0,r)} Q(y) d\mathcal{H}^{n-1}(y)$, where ω_{n-1} denotes the area of the unit sphere \mathbb{S}^{n-1}

in \mathbb{R}^n . We say that a function $\varphi: D \to \mathbb{R}$ has a *finite mean oscillation* at a point $x_0 \in D$, write $\varphi \in FMO(x_0)$, if $\limsup_{\varepsilon \to 0} \frac{1}{\Omega_n \varepsilon^n} \int\limits_{B(x_0, \varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| \ dm(x) < \infty$, where $\overline{\varphi}_{\varepsilon} = \frac{1}{\Omega_n \varepsilon^n} \int\limits_{B(x_0, \varepsilon)} \varphi(x) \ dm(x)$ and

 Ω_n is the volume of the unit ball \mathbb{B}^n in \mathbb{R}^n . We also say that a function $\varphi:D\to\mathbb{R}$ has a finite mean

oscillation at $A \subset \overline{D}$, write $\varphi \in FMO(A)$, if φ has a finite mean oscillation at any point $x_0 \in A$. Let h be a chordal metric in $\overline{\mathbb{R}^n}$,

$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}}, \quad h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}, \qquad x \neq \infty \neq y,$$

and let $h(E) := \sup_{x,y \in E} h(x,y)$ be a chordal diameter of a set $E \subset \overline{\mathbb{R}^n}$ (see, e.g., [2, Definition 12.1]).

Theorem 1. Let D be a domain in \mathbb{R}^n , $n \geq 2$, and let $f_j : D \to \mathbb{R}^n$, $j = 1, 2, \ldots$, be a sequence of homeomorphisms that converges to some mapping $f : D \to \overline{\mathbb{R}^n}$ locally uniformly in D by the metric h, and satisfy the relations (4)–(5) in each point $y_0 \in \overline{\mathbb{R}^n}$. Assume that one of two conditions holds:

- 1) $Q \in FMO(\overline{\mathbb{R}^n})$, or
- 2) for any $y_0 \in \overline{\mathbb{R}^n}$ there exist $\varepsilon_1(y_0) > 0$ and $\delta(y_0) > 0$ such that

$$\int_{\varepsilon}^{\delta(y_0)} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} < \infty \qquad \forall \ \varepsilon \in (0, \varepsilon_1(y_0)), \qquad \int_{0}^{\delta(y_0)} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} = \infty.$$
 (6)

Then f is either a homeomorphism $f: D \to \mathbb{R}^n$, or a constant $c \in \overline{\mathbb{R}^n}$.

Here the conditions mentioned above for $y_0 = \infty$ must be understood as conditions for the function $\widetilde{Q}(y) := Q(y/|y|^2)$ at the origin. We should note that the second condition in (6) is not only a sufficient but also a necessary condition in Theorem 1. The following conclusion holds.

Theorem 2. Let $Q: \mathbb{R}^n \to [0, \infty]$ be locally integrable function such that

$$\int_{0}^{\delta(y_0)} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} < \infty$$

for some $y_0 \in \mathbb{R}^n$ and $\delta(y_0) > 0$. Then there exists a sequence of homeomorphisms $f_j : D \to \mathbb{R}^n$, $j = 1, 2, \ldots$, satisfying the relations (4)-(5) at y_0 which converges to some mapping $f : D \to \overline{\mathbb{R}^n}$ locally uniformly in D by the metric h, which is neither a homeomorphism nor a constant.

The results mentioned above are published in [3].

References

- [1] Martio O., Ryazanov V., Srebro U. and Yakubov E. *Moduli in Modern Mapping Theory*. Springer Science + Business Media, LLC : New York, 2009.
- [2] Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer-Verlag, 1971.
- [3] Sevost'yanov E., Targonskii V. On convergence of homeomorphisms with inverse modulus inequality. *European Journal of Mathematics*, Volume 11, article number 17, 2025.