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This talk is based on a joint work with Nadav Gropper and Yi Wang [GUW25].
The analogy between knots and primes, or 3-manifolds and the ring of integers of number fields, has

been systematically developed by Mazur [Maz64, Maz12], Kapranov [Kap95], Reznikov [Rez97, Rez00],
Morishita [Mor02, Mor12, Mor24], Kim [Kim20], and others. In their spirit of arithmetic topology,
we have formulated in [Nii14, NU19] an analogue of Artin–Takagi–Chevalley’s idelic class field theory
that sums up all local theories to describe all abelian branched covers of a 3-manifold M endowed
with a certain infinite link K. Successive studies are [Mih19, NU23, Tas25b, Tas25a]. In addition,
analogues of the set of all primes have been studied in [Maz12, McM13, Uek20, Uek21a, Uek21b].
Extending this context, we may discuss an analogue of so-called anabelian geometry, whose initial

fundamental result is the classical Neukirch–Uchida theorem stated as follows.
Theorem 1 (Neukirch [Neu69b, Neu69a], Uchida [Uch76], see also [NSW08, Theorem 12.2.1]). Let Q
be an algebraic closure of Q. Let E,F be number fields, that is, finite extensions of Q in Q. If there is
an isomrphism φ : Gal(Q/E)

∼=→ Gal(Q/F ) of topological groups, then there uniquely exists a natural
isomorphism E

∼=→ F , that is, there is a unique σ ∈ AutQ such that F = σ(E) and σ induces φ.
In the proof, the Hilbert ramification theory for infinite Galois extensions, the Poiteau–Tate duality,

and the Chebotarev density theorem play key roles. One of the main steps is to prove the following.
Theorem 2 ([NSW08, Theorem 12.2.5]). Let F/Q be a finite Galois extension and E/Q a finite
extension. If all primes p ∈ Q with a prime factor of degree 1 in E/Q completely decompose in F/Q,
then F ⊂ E.
Now letM be an oriented connected closed 3-manifold with a base point bM and let K =

∪
i∈Z≥0

Ki

be an infinite link consisting of countably many tame components. Let Cov(M,K) denote the set of
all branched covers branched along finite sublinks of K. We define the absolute Galois group of (M,K)
by Gal(M,K) = lim←−h∈Cov(M,K)

Galh = lim←−L⊂K π̂1(M − L), where π̂1 denotes the profinite completion
of π1. Then, we may formulate the Hilbert ramification theory for pro-covers [GUW25]. Suppose in
addition that K obeys the Chebotarev law. Then it turns out that for any h ∈ Cov(M,K), the inverse
image h−1(K) is again Chebotarev [GUW25]. An analogue of Theorem 1 may be stated as follows.
Theorem 3 ([GUW25]). Let the setting be as above. Let G1, G2 be open subgroups of Gal(M,K)
and let h1, h2 ∈ Cov(M,K) denote the corresponding branched covers. If there is an isomorphism
φ : G1

∼=→ G2 of topological groups, then there uniquely exists a natural isomorphism h1 ∼= h2 of
branched covers, that is, there is a unique σ ∈ Gal(M,K) such that h2 ◦ σ = h1 and σ induces φ.
An analogue of the key step is as follows.

Theorem 4 ([GUW25]). Let h1, h2 ∈ Cov(M,K) and suppose that h1 is Galois. If all knots K ⊂ K
whose inverse image h−1

2 (K) has a component of covering degree 1 in h2 completely decompose in h1,
then h1 is a subcover of h2.
Once the theorem’s statement comes into view, in the context of research aiming to systematize

analogies, numerous problems to be addressed in the future become apparent. In the topology side,
the classical Mostow rigidity assures that hyperbolic manifolds are determined by their fundamental
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groups. In addition, in recent days, profinite rigidity has been of great interest [Rei18, BJZR23]. But
we believe that rigidity for such a large group Gal(M,K) is a new viewpoint and would be of interest,
even away from the context of the analogy.
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