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Let C' and p be a reduced singular curve over C and its singular point respectively. We refer to the
germ of C' at p as a curve singularity and denote it by (C,p). Let Ko(Varc) be the Grothendieck ring
of complex algebraic varieties.

For a reduced curve singularity (C, p), the motivic Hilbert zeta function with support at p is defined

as
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where C’I[,” consits of length [ subschemes of C supported at p. It is known that Zg,illjb(t) is rational (see
[1]). We refer to C’I[f] as the punctual Hilbert scheme of degree | for the given curve singularity (C,p).
In this talk, we consider the following assumtion:

Assumption 1. For a given curve singularity (C,p), any punctual Hilbert scheme CZ[JZ] admits an
affine cell decomposition.

Remark 2. It is known that any irreducible plane curve singularity with one Puiseux pair satisfies
Assumption [] (see [6]).

Let I denote the class of the affine line Al in Koy(Varc).

Lemma 3. Let (C,p) be a reduced curve singularity that satisfies Assumption M. Then the class [C][f]]

in Ko(Varc) is a polynomial in C[L]. Furthermore, the Euler number X(C}[,l]) is equal to the number
of affine cells of CU.

By Lemma [, we see that the motivic Hilbert zeta function () is an element of C[L|[[t]] under
Assumption 0. Therefore, instead of Zgj;)b(t), we use the notation Zg‘;b (t,L).

Theorem 4. Let (C,p) be a reduced curve singularity. If Assumption 0 holds, then we have
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where X(C’I[,l]) is the Euler number of C’;[,”.

Let I' be a semigroup and let Mod(I") denote the set of all I'-semimodules. For a I'-semimodule A,
we define its codimension by codim(A) := #(I'\ A). The generating function I(I'; q) of I'-semimodules
is defined to be

I(F, q) — Z qcodim(A).
AeMod(T)

Theorem 5. For an irreducible curve singularity (C,p) with one Puiseuz pair, the following realtion
holds:

Ze (q,1) = I(Ts;q)
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Using our results, we clarify the relations among Motivic Hilbert zeta functions and other invariants.
Below we focus on reduced plane curve singularities. Let P(L¢,) be the HOMFLY polynomial of the
oriented link L¢ ), associated with (C,p). The following relation was conjectured by Oblomkov and
Shende in [4] and was finally proved by Maulik in [3]:
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On the other hand, Shende [5] also proved the relation
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where ¢ is the delta invariant of (C,p) and V},’s are the severi strata of the miniversal deformation of

(C,p).
Consequently, the following fact follows from Theorem [ and B, along with the relations (B) and (§).

Theorem 6. Here notations remain the same as above. If (C,p) is an irreducible plane curve singu-
larity with one Puiseux pair, then we have
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Zg0(q,1) =1(T;q) = Y _ ¢ (1 — q)*" ' deg, V. (5)
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Remark 7. The equivalence of the HOMFLY polynomial and the generating function of I'-semimodules
I(T;q) in () was pointed out by Chavan ([2]).
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