MOTIVIC HILBERT ZETA FUNCTIONS OF CURVE SINGULARITIES AND RELATED INVARIANTS

Masahiro Watari

(University of Kuala Lumpur, Malaysia France Institute, Japanese Collaboration Program) *E-mail:* masahiro@unikl.edu.my

Let C and p be a reduced singular curve over \mathbb{C} and its singular point respectively. We refer to the germ of C at p as a curve singularity and denote it by (C, p). Let $K_0(\operatorname{Var}_{\mathbb{C}})$ be the Grothendieck ring of complex algebraic varieties.

For a reduced curve singularity (C, p), the *motivic Hilbert zeta function* with support at p is defined as

$$Z_{C,p}^{\text{Hilb}}(t) := \sum_{l=0}^{\infty} [C_p^{[l]}] t^l \in 1 + t K_0(\text{Var}_{\mathbb{C}})[[t]]$$
(1)

where $C_p^{[l]}$ consists of length l subschemes of C supported at p. It is known that $Z_{C,p}^{\text{Hilb}}(t)$ is rational (see [1]). We refer to $C_p^{[l]}$ as the punctual Hilbert scheme of degree l for the given curve singularity (C, p). In this talk, we consider the following assumption:

Assumption 1. For a given curve singularity (C, p), any punctual Hilbert scheme $C_p^{[l]}$ admits an affine cell decomposition.

Remark 2. It is known that any irreducible plane curve singularity with one Puiseux pair satisfies Assumption 1 (see [6]).

Let \mathbb{L} denote the class of the affine line \mathbb{A}^1 in $K_0(\operatorname{Var}_{\mathbb{C}})$.

Lemma 3. Let (C, p) be a reduced curve singularity that satisfies Assumption 1. Then the class $[C_p^{[l]}]$ in $K_0(\operatorname{Var}_{\mathbb{C}})$ is a polynomial in $\mathbb{C}[\mathbb{L}]$. Furthermore, the Euler number $\chi(C_p^{[l]})$ is equal to the number of affine cells of $C^{[l]}$.

By Lemma 3, we see that the motivic Hilbert zeta function (1) is an element of $\mathbb{C}[\mathbb{L}][[t]]$ under Assumption 1. Therefore, instead of $Z_{C,p}^{\text{Hilb}}(t)$, we use the notation $Z_{C,p}^{\text{Hilb}}(t,\mathbb{L})$.

Theorem 4. Let (C, p) be a reduced curve singularity. If Assumption 1 holds, then we have

$$Z_{C,p}^{\text{Hilb}}(q,1) = \sum_{l=0}^{\infty} \chi(C_p^{[l]}) q^l$$

where $\chi(C_p^{[l]})$ is the Euler number of $C_p^{[l]}$.

Let Γ be a semigroup and let $Mod(\Gamma)$ denote the set of all Γ -semimodules. For a Γ -semimodule Δ , we define its codimension by $codim(\Delta) := \#(\Gamma \setminus \Delta)$. The generating function $I(\Gamma; q)$ of Γ -semimodules is defined to be

$$I(\Gamma;q) := \sum_{\Delta \in \operatorname{Mod}(\Gamma)} q^{\operatorname{codim}(\Delta)}.$$

Theorem 5. For an irreducible curve singularity (C, p) with one Puiseux pair, the following realtion holds:

$$Z_{C,p}^{\text{Hilb}}(q,1) = I(\Gamma;q)$$

Using our results, we clarify the relations among Motivic Hilbert zeta functions and other invariants. Below we focus on reduced plane curve singularities. Let $P(L_{C,p})$ be the HOMFLY polynomial of the oriented link $L_{C,p}$ associated with (C,p). The following relation was conjectured by Oblomkov and Shende in [4] and was finally proved by Maulik in [3]:

$$\sum_{l=0}^{\infty} \chi(C_p^{[l]}) q^{2l} = \left(\frac{q}{a}\right)^{\mu-1} P(L_{C,p})\Big|_{a=0}$$
(2)

On the other hand, Shende [5] also proved the relation

$$\sum_{l=0}^{\infty} \chi(C_p^{[l]}) q^l = \sum_{l=0}^{\delta} q^{\delta-l} (1-q)^{2h-1} \mathrm{deg}_p \mathbb{V}_h$$
(3)

where δ is the delta invariant of (C, p) and \mathbb{V}_h 's are the severi strata of the miniversal deformation of (C, p).

Consequently, the following fact follows from Theorem 4 and 5, along with the relations (2) and (3).

Theorem 6. Here notations remain the same as above. If (C, p) is an irreducible plane curve singularity with one Puiseux pair, then we have

$$Z_{C,p}^{\text{Hilb}}(q^2, 1) = I(\Gamma; q^2) = \left(\frac{q}{a}\right)^{\mu-1} P(L_{C,p})\Big|_{a=0},$$
(4)

$$Z_{C,p}^{\text{Hilb}}(q,1) = I(\Gamma;q) = \sum_{l=0}^{o} q^{\delta-l} (1-q)^{2h-1} \text{deg}_p \mathbb{V}_h.$$
 (5)

Remark 7. The equivalence of the HOMFLY polynomial and the generating function of Γ -semimodules $I(\Gamma; q)$ in (4) was pointed out by Chavan ([2]).

References

- D. Bejleri, D. Rangnathan and R. Vakil, Motivic Hilbert zeta functions of curves are rational, Dule Math. J. 97 (1999), 99–108.
- [2] P. Chavan, Counting ideals in numerical semigroups, arXiv:2304.13690v1.
- [3] D. Maulik, Stable pairs and the HOMFLY polynomial, Ivent, Math, 204 (2016), no. 3, 787-831.
- [4] A. Oblomkov and V. Shende, The Hilbert scheme of a plane curve singularity and the HOMEFLY polynomial of its link, Duke Math. J. 161 (2012), no. 7, 1277-1303.
- [5] V. Shende, Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation, Compos. Math. 148 (2) (2012), 531–547.
- [6] M. Watari, Topology of the punctual Hilbert schemes of plane curve singularities with one Puiseux pair, preprint.