BALAYAGE IN MINIMUM RIESZ ENERGY PROBLEMS WITH EXTERNAL FIELDS

Natalia Zorii

(Institute of Mathematics of NASU, Tereshchenkivska 3, 02000, Kyiv, Ukraine) *E-mail:* zorii@imath.kiev.ua

This talk deals with a minimum energy problem in the presence of external fields on \mathbb{R}^n , $n \ge 2$, the energy being evaluated with respect to the α -Riesz kernel $\kappa_{\alpha}(x, y) := |x - y|^{\alpha - n}$, where $\alpha \in (0, n)$ and $\alpha \le 2$. (Here |x - y| is the Euclidean distance between $x, y \in \mathbb{R}^n$.) For precise formulations, we denote by \mathfrak{M} the linear space of all (real-valued Radon) measures μ on \mathbb{R}^n , equipped with the *vague* topology of pointwise convergence on the continuous functions $\varphi : \mathbb{R}^n \to \mathbb{R}$ of compact support, and by \mathfrak{M}^+ the cone of all positive $\mu \in \mathfrak{M}$. Given $\mu, \nu \in \mathfrak{M}$, we define the *mutual energy* and *potential* by means of

$$I(\mu,\nu) := \int \kappa_{\alpha}(x,y) \, d(\mu \otimes \nu)(x,y) \quad \text{and} \quad U^{\mu}(x) := \int \kappa_{\alpha}(x,y) \, d\mu(y), \quad x \in \mathbb{R}^{n}.$$

respectively, provided the value on the right is well defined as a finite number of $\pm \infty$. For $\mu = \nu$, $I(\mu, \nu)$ defines the energy $I(\mu) := I(\mu, \mu)$. A crucial fact is that κ_{α} is strictly positive definite in the sense that for any $\mu \in \mathfrak{M}$, $I(\mu)$ is ≥ 0 whenever defined, and moreover $I(\mu) = 0 \iff \mu = 0$. This implies that all $\mu \in \mathfrak{M}$ with $I(\mu) < \infty$ form a pre-Hilbert space \mathcal{E} with the inner product $\langle \mu, \nu \rangle := I(\mu, \nu)$ and the norm $\|\mu\| := \sqrt{I(\mu)}$. The topology on \mathcal{E} defined by $\|\cdot\|$ is said to be strong. Moreover, κ_{α} is perfect, which means that the cone $\mathcal{E}^+ := \mathcal{E} \cap \mathfrak{M}^+$ is strongly complete, while the strong topology on \mathcal{E}^+ is finer than the induced vague topology on \mathcal{E}^+ . (See Landkof's book [3] and historical notes therein.)

Fixing $A \subseteq \mathbb{R}^n$, we denote by $\mathcal{E}^+(A)$ the class of all $\mu \in \mathcal{E}^+$ concentrated on A, which means that $A^c := \mathbb{R}^n \setminus A$ is μ -negligible. (For closed A, $\mathcal{E}^+(A)$ consists of all $\mu \in \mathcal{E}^+$ with support $S(\mu) \subset A$.) Also fix an external field $f := -U^\vartheta$, where $\vartheta \in \mathfrak{M}^+$ is given. The problem in question is that on minimizing the Gauss functional $I_f(\mu)$, which sometimes is also referred to as the *f*-weighted energy, where

$$I_f(\mu) := \|\mu\|^2 + 2 \int f \, d\mu = \|\mu\|^2 - 2I(\mu, \vartheta)$$

and μ ranges over $\mathcal{E}^1(A) := \{ \mu \in \mathcal{E}^+(A) : \mu(\mathbb{R}^n) = 1 \}$. That is, does there exist $\lambda_{A,f} \in \mathcal{E}^1(A)$ with

$$I_f(\lambda_{A,f}) = \inf_{\mu \in \mathcal{E}^1(A)} I_f(\mu)?$$
(1)

The investigation of this problem, initiated by Gauss, is still of interest due to its important applications in various areas of mathematics (see e.g. Saff and Totik [5] and numerous references therein).

If A := K is compact while $f|_K$ is finitely continuous, then $\lambda_{K,f}$ does exist, for $I_f(\cdot)$ is vaguely lower semicontinuous, whereas $\mathcal{E}^1(K)$ is vaguely compact [1, Section III.1, Corollary 3 to Proposition 15]. However, these arguments, based on the vague topology only, fail down if A is noncompact, and the problem becomes "rather difficult" (Ohtsuka [4, p. 219]). To examine problem (1) for noncompact A, we developed an approach based on the perfectness of κ_{α} , whence on both the strong and vague topologies on \mathcal{E} (see [10, 11]). To this end, we need to impose on A and ϑ the following three requirements:

• The cone $\mathcal{E}^+(A)$ is strongly closed, whence strongly complete. (As shown in [10, Theorem 3.9], this in particular holds if A is closed or even quasiclosed. By Fuglede [2], the latter means that A can be approximated in outer capacity by closed sets. For the concepts of outer and inner capacities, see e.g. Landkof [3, Section II.2.6]. It is worth noting here that a quasiclosed set is not necessarily Borel.)

• $c_*(A) > 0$, where $c_*(\cdot)$ stands for the inner capacity of a set; or equivalently $\mathcal{E}^1(A) \neq \emptyset$.

• $\vartheta \in \mathfrak{M}^+$ is bounded, i.e. $\vartheta(\mathbb{R}^n) < \infty$, and moreover

$$\inf_{(x,y)\in S(\vartheta)\times A}\,|x-y|>0.$$

Then, the *inner* κ_{α} -balayage ϑ^A of ϑ to A can be defined as the unique bounded measure in $\mathcal{E}^+(A)$ such that $U^{\vartheta^A} = U^{\vartheta}$ n.e. on A, i.e. on all of A except for a set with $c_*(\cdot) = 0$; see [10, Theorem 4.7(iii_1)]. (For the general theory of inner κ_{α} -balayage, we refer to [6, 7], cf. also [8, 9].) This implies that $I_f(\cdot)$ is strongly continuous on $\mathcal{E}^+(A)$, which is crucial to the analysis of problem (1), performed in [10, 11].

Theorem 1 (see [11, Theorem 2.6]). For $\lambda_{A,f}$ to exist, it is necessary and sufficient that

$$c_*(A) < \infty \quad or \quad \vartheta^A(\mathbb{R}^n) \ge 1.$$
 (2)

By [7, Definition 2.1], $Q \subset \mathbb{R}^n$ is said to be not inner α -thin at infinity if

$$\sum_{j \in \mathbb{N}} \frac{c_*(Q_j)}{q^{j(n-\alpha)}} = \infty$$

where $q \in (1, \infty)$ and $Q_j := Q \cap \{y \in \mathbb{R}^n : q^j < |y| \leq q^{j+1}\}$. The inner κ_{α} -balayage of any $\mu \in \mathfrak{M}^+$ to such Q preserves its total mass [7, Corollary 5.3], whence the following corollary to Theorem 1 holds.

Corollary 2. If A is not inner α -thin at infinity, then $\lambda_{A,f}$ exists if and only if $\vartheta(\mathbb{R}^n) \ge 1$.

of all $x \in A$ such that $c_*(A \cap U_x) > 0$ for any neighborhood U_x of x in \mathbb{R}^n , cf. [3, p. 164].

Theorem 3 (see [11, Theorem 2.10]). Assume (2) is fulfilled, and moreover $\vartheta^A(\mathbb{R}^n) \leq 1$. Then

$$\lambda_{A,f} = \begin{cases} \vartheta^A + c_{A,f} \gamma_A & \text{if } c_*(A) < \infty, \\ \vartheta^A & \text{otherwise,} \end{cases}$$
(3)

where $c_{A,f} \in [0,\infty)$, while γ_A is the inner κ_{α} -equilibrium measure on A, normalized by $\gamma_A(\mathbb{R}^n) = c_*(A)$.

For the inner κ_{α} -equilibrium measure on the set A in question, see [9, Theorem 7.2] with $\kappa := \kappa_{\alpha}$. In the following Theorems 4 and 5, A is assumed to be *closed*. The *reduced kernel* \check{A} of A is the set

Theorem 4 (see [11, Theorem 2.11]). Under the requirements of Theorem 3, assume moreover that A^c is connected unless $\alpha < 2$. Then, by virtue of the representation (3) and [6, Theorems 7.2, 8.5],

$$S(\lambda_{A,f}) = \begin{cases} \check{A} & \text{if } \alpha < 2, \\ \partial_{\mathbb{R}^n} \check{A} & \text{otherwise.} \end{cases}$$

Theorem 5 (see [10, Theorem 2.22]). If A is not α -thin at infinity and $\delta(\mathbb{R}^n) > 1$, then $S(\lambda_{A,f})$ is compactly supported in A. (Compare with Theorem 4. Note that $\lambda_{A,f}$ does exist, see Corollary 2.)

Theorems 4, 5 give an answer to the question raised by Ohtsuka in [4, p. 284, Open question 2.1].

References

- [1] Bourbaki, N.: Integration. Chapters 1–6. Springer (2004)
- [2] Fuglede, B.: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier Grenoble 21, 123–169 (1971)
- [3] Landkof, N.S.: Foundations of Modern Potential Theory. Springer (1972)
- [4] Ohtsuka, M.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-I 25, 135–352 (1961)
- [5] Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer (2024)
- [6] Zorii, N.: A theory of inner Riesz balayage and its applications. Bull. Pol. Acad. Sci. Math. 68, 41–67 (2020)
- [7] Zorii, N.: Harmonic measure, equilibrium measure, and thinness at infinity in the theory of Riesz potentials. Potential Anal. 57, 447–472 (2022)
- [8] Zorii, N.: Balayage of measures on a locally compact space. Anal. Math. 48, 249–277 (2022)

Balayage in minimum Riesz energy problems with external fields

- [10] Zorii, N.: Minimum Riesz energy problems with external fields. J. Math. Anal. Appl. 526, 127235 (2023)
- [11] Zorii N.: Inner Riesz balayage in minimum energy problems with external fields. Constr. Approx., to appear, arXiv:2306.12788v2