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1. The connection of the two-fold exterior power

of the pull-back bundle

(N, h): a 4-dimensional Riemannian space form,

M : a Riemann surface,

F :M −→ N : a conformal immersion,

(u, v): local isothermal coordinates of M .

The induced metric g of M by F is represented as g = e2λ(du2 + dv2).

T1 := dF

µ
∂

∂u

¶
, T2 := dF

µ
∂

∂v

¶
,

N1, N2: normal vector fields of F satisfying

h(N1, N1) = h(N2, N2) = e
2λ, h(N1, N2) = 0.



Suppose that N is oriented and that (T1, T2, N1, N2) gives the orientation.

We set e1 :=
1

eλ
T1, e2 :=

1

eλ
T2, e3 :=

1

eλ
N1, e4 :=

1

eλ
N2, and

Θ±,1 :=
1√
2
(e1 ∧ e2 ± e3 ∧ e4),

Θ±,2 :=
1√
2
(e1 ∧ e3 ± e4 ∧ e2),

Θ±,3 :=
1√
2
(e1 ∧ e4 ± e2 ∧ e3).

The two-fold exterior power
V2F ∗TN of the pull-back bundle F ∗TN on M

by F is decomposed into two subbundles
V2
±F
∗TN , and

Θ±,1, Θ±,2, Θ±,3 form local orthonormal frame fields of
V2
±F
∗TN respectively.



∇: the Levi-Civita connection of (N, h),
∇̂: the connection of V2F ∗TN induced by ∇.
Then ∇̂ gives connections of V2±F ∗TN and we obtain

∇̂T1(Θ±,1 Θ±,2 Θ±,3) = (Θ±,1 Θ±,2 Θ±,3)

⎡⎢⎣ 0 −W± −Y∓
W± 0 ±ψ±
Y∓ ∓ψ± 0

⎤⎥⎦,

∇̂T2(Θ±,1 Θ±,2 Θ±,3) = (Θ±,1 Θ±,2 Θ±,3)

⎡⎢⎣ 0 ∓Z± ±X∓
±Z± 0 ∓φ∓
∓X∓ ±φ∓ 0

⎤⎥⎦,



where

• W±, X±, Y±, Z± are functions given by
W± = α2 ± β1, X± = α2 ± β3, Y± = β2 ± α1, Z± = β2 ± α3

and

σ(T1, T1) = α1N1 + β1N2, σ(T1, T2) = α2N1 + β2N2,

σ(T2, T2) = α3N1 + β3N2

for the second fundamental form σ of F , and

• φ±, ψ± are functions given by φ± = λu ∓ μ2, ψ± = λv ∓ μ1, and

μ1, μ2 are functions given by

∇⊥T1N1 = λuN1 + μ1N2, ∇⊥T2N1 = λvN1 + μ2N2

for the normal connection ∇⊥ of F .



2. The equations of Gauss, Codazzi and Ricci

R̂: the curvature tensor of ∇̂,
L0: the constant sectional curvature of N .

Then we have

R̂(T1, T2)(Θ±,1 Θ±,2 Θ±,3) = (Θ±,1 Θ±,2 Θ±,3)

⎡⎢⎣ 0 0 0

0 0 ±L0e2λ
0 ∓L0e2λ 0

⎤⎥⎦.
We can express the left hand side by W±, X±, Y±, Z± and so on, and
we obtain

W∓X± + Y±Z∓ = L0e2λ + (φ±)u + (ψ∓)v (the equations of Gauss, Ricci),

(Y±)v ∓ (X±)u = ±W∓φ± − Z∓ψ∓,
(W∓)v ± (Z∓)u = ∓Y±φ± −X±ψ∓

(the equations of Codazzi)

([4, 5]).



K: the curvature of g: K = −e−2λ(λuu + λvv).

We say that the normal connection ∇⊥ of F is flat
if the curvature tensorR⊥ of∇⊥ vanishes, which is equivalent to (μ1)v = (μ2)u.
The twistor lifts of F are sections of the twistor spaces associated with

the pull-back bundle F ∗TN and locally given by Θ±,1.

The twistor lifts Θ±,1 of F are said to be nondegenerate (resp. degenerate)
if for each ε ∈ {+,−}, ∇̂T1Θε,1 and ∇̂T2Θε,1 are linearly independent
(resp. dependent) at each point of M .

Then we observe that the following conditions are mutually equivalent ([4]):

(a) the immersion F satisfies both K ≡ L0 and R⊥ ≡ 0;
(b) the twistor lifts Θ±,1 of F are degenerate;

(c) ∆± := W∓X± + Y±Z∓ = 0.



Remark

The twistor lifts Θ±,1 of F are nondegenerate if and only if ∆± 6= 0.
If we suppose ∆± 6= 0, then the equations of Codazzi are rewritten into
(φ±,ψ∓) = (A±, B∓), where"

A±
B∓

#
:= ∓ 1

∆±

"
−X± Z∓
±Y± ±W∓

#"
(Y±)v ∓ (X±)u
(W∓)v ± (Z∓)u

#
.

Using A±, B∓, we can obtain characterizations of surfaces such that
the twistor lifts are nondegenerate ([4]).



3. Surfaces with degenerate twistor lifts

• If F has a parallel normal vector field, then the second fundamental form σ

of F satisfies the linearly dependent condition, that is, F satisfies

cos θ(α1,α2,α3) + sin θ(β1, β2, β3) = 0

for a function θ.

• If σ satisfies the linearly dependent condition, then ∇⊥ is flat.
• Suppose K 6= L0. Then F has a parallel normal vector field if and only if
σ satisfies the linearly dependent condition ([5]).

• If we suppose K ≡ L0, then the linearly dependent condition of σ
does not necessarily mean the existence of parallel normal vector fields ([5]).



Suppose that there exist nowhere zero functions k± satisfying

(W∓, Z∓) = k±(−Y±, X±). (1)

Then ∆± = 0 hold, that is, F satisfies both K ≡ L0 and R⊥ ≡ 0.
By (1) and the equations of Codazzi, there exist functions f± satisfying

X± = ±
(f±)vq
1 + k2±

, Y± =
(f±)uq
1 + k2±

. (2)

By the equation of Ricci, we obtain

(f+)
2
u + (f+)

2
v = (f−)2u + (f−)2v (=: B).

Therefore, if B 6= 0, then there exists a function ψ satisfying"
(f−)u
(f−)v

#
=

"
cosψ − sinψ
sinψ cosψ

#"
(f+)v

(f+)u

#
. (3)



Suppose that X±, Y± satisfy X2+Y 2− −X2−Y 2+ 6= 0.
Then σ does not satisfy the linearly dependent condition ([5]).

By the definitions of W±, X±, Y±, Z±, we have

W+ +W− = X+ +X−, Y+ + Y− = Z+ + Z−.

Applying (1) to these relations, we obtain

k+ =
X2− + Y 2− +X+X− + Y+Y−

X+Y− −X−Y+
,

k− = −
X2+ + Y

2
+ +X+X− + Y+Y−
X+Y− −X−Y+

.

Applying (2) to these relations, we obtain k+ =
Ck− − A
Ak− + C

, where

A := (f+)v(f−)u + (f−)v(f+)u ( 6= 0), C := (f+)u(f−)u − (f+)v(f−)v.



We have A = B cosψ, C = −B sinψ.

Applying these relations and k+ =
Ck− − A
Ak− + C

to the equations of Codazzi,

we obtain "
γu

γv

#
= −

"
(θ−)u
(θ−)v

#
+

∂(f+,ψ)

∂(u, v)

∂(f+, f−)
∂(u, v)

"
(f−)u
(f−)v

#

− 1
A0

"
2(f+)u(f−)u A

A 2(f+)v(f−)v

#"
λu

λv

#
([5]), where

• γ is a function satisfying γu = μ1, γv = μ2,

• θ− is a function given by tan θ− = k−,
• A0 := (f+)v(f−)u − (f−)v(f+)u = −

∂(f+, f−)
∂(u, v)

(6= 0).



In addition, if L0 = 0, then we obtain

"
γu

γv

#
= −

"
(θ−)u
(θ−)v

#
+

∂(f+,ψ)

∂(u, v)

∂(f+, f−)
∂(u, v)

"
(f−)u
(f−)v

#
.

Therefore there exists a function ξ̃ of one variable satisfying

∂(f+,ψ)

∂(u, v)
= ξ̃(f−)

∂(f+, f−)
∂(u, v)

.

By this relation and (3), we obtain"
ψu

ψv

#
= (cos2ψ)a + (cosψ sinψ)b + (sin2ψ)c

([5]), where a, b, c are R2-valued functions constructed by f− and ξ̃(f−).



4. Space-like or time-like surfaces in neutral or Lorentzian

4-dimensional space forms

In the case where N is neutral, analogous discussions and results are valid

for space-like or time-like surfaces.

In the case where N is Lorentzian, analogous discussions and results are also

valid for space-like or time-like surfaces.

However, in this case, we need the decomposition of the complexification of

the two-fold exterior power of the pull-back bundle on a space-like or time-like

surface.



(N, h): a 4-dimensional Lorentzian space form,

M : a Riemann surface,

F :M −→ N : a space-like and conformal immersion,

(u, v): local isothermal coordinates of M .

The induced metric g of M by F is represented as g = e2λ(du2 + dv2).

T1 := dF

µ
∂

∂u

¶
, T2 := dF

µ
∂

∂v

¶
,

N1, N2: normal vector fields of F satisfying

h(N1, N1) = −h(N2, N2) = e2λ, h(N1, N2) = 0.



Suppose that N is oriented and that (T1, T2, N1, N2) gives the orientation.

We set e1 :=
1

eλ
T1, e2 :=

1

eλ
T2, e3 :=

1

eλ
N1, e4 :=

1

eλ
N2, and

Θ1 :=
1√
2
(e1 ∧ e2 +

√
−1e3 ∧ e4),

Θ2 :=
1√
2
(e1 ∧ e3 +

√
−1e4 ∧ e2),

Θ3 :=
1√
2
(
√
−1e1 ∧ e4 + e2 ∧ e3).

The complexification
V2F ∗TN ⊗C of the two-fold exterior power of

the pull-back bundle F ∗TN on M by F is decomposed into two subbundlesV2
±F
∗TN of complex rank 3, and

Θ1, Θ2, Θ3 form a local frame field of
V2
+F
∗TN .



∇: the Levi-Civita connection of (N, h).
Then ∇ induces a connection ∇̂ of V2F ∗TN ⊗C naturally.

In addition, ∇̂ gives the connections of V2±F ∗TN ([4]).

Then we obtain

∇̂T1(Θ1 Θ2 Θ3) = (Θ1 Θ2 Θ3)

⎡⎢⎣ 0 −W
√
−1Y

W 0 ψ

−
√
−1Y −ψ 0

⎤⎥⎦,

∇̂T2(Θ1 Θ2 Θ3) = (Θ1 Θ2 Θ3)

⎡⎢⎣ 0
√
−1Z X

−
√
−1Z 0 −φ
−X φ 0

⎤⎥⎦,



where

W := α2 −
√
−1β1, X := α2 +

√
−1β3,

Y := β2 −
√
−1α1, Z := β2 +

√
−1α3

and

φ := λu −
√
−1μ2, ψ := λv +

√
−1μ1.

By these relations, we obtain

WX − Y Z = L0e2λ + φu + ψv (the equations of Gauss, Ricci),

Yv +
√
−1Xu = −

√
−1Wφ− Zψ,

Wv +
√
−1Zu = −

√
−1Y φ−Xψ (the equations of Codazzi)

([4, 5]).

Referring to Sections 2, 3, we can obtain analogous results for space-like

surfaces in N .



Remark

For a local complex coordinate w = u +
√
−1v, we have

∇̂∂/∂wΘ1 =
1

2
((W + Z)Θ2 −

√
−1(X + Y )Θ3).

Whether ∇̂∂/∂wΘ1 vanishes or not is determined by F , and
∇̂∂/∂wΘ1 = 0 is equivalent to

W + Z = 0, X + Y = 0.

In particular, if ∇̂∂/∂wΘ1 = 0, then WX − Y Z = 0.
Therefore ∇̂∂/∂wΘ1 = 0 gives a special class of space-like surfaces such that
the complex twistor lifts are degenerate, and

we can obtain a characterization of surfaces with ∇̂∂/∂wΘ1 = 0 ([4]).



M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion,

(u, v): local coordinates of M compatible with the paracomplex structure

of M .

The induced metric g of M by F is represented as g = e2λ(du2 − dv2).

T1 := dF

µ
∂

∂u

¶
, T2 := dF

µ
∂

∂v

¶
,

N1, N2: normal vector fields of F satisfying

h(N1, N1) = h(N2, N2) = e
2λ, h(N1, N2) = 0.



Suppose that N is oriented and that (T1, T2, N1, N2) gives the orientation.

We set e1 :=
1

eλ
N1, e2 :=

1

eλ
N2, e3 :=

1

eλ
T1, e4 :=

1

eλ
T2.

Then

Θ1 :=
1√
2
(e1 ∧ e2 −

√
−1e3 ∧ e4),

Θ2 :=
1√
2
(e1 ∧ e3 −

√
−1e4 ∧ e2),

Θ3 :=
1√
2
(−
√
−1e1 ∧ e4 + e2 ∧ e3).

form a local frame field of
V2
−F
∗TN .



We obtain

∇̂T1(Θ1 Θ2 Θ3) = (Θ1 Θ2 Θ3)

⎡⎢⎣ 0 −
√
−1W −

√
−1Y√

−1W 0 −
√
−1ψ√

−1Y
√
−1ψ 0

⎤⎥⎦,

∇̂T2(Θ1 Θ2 Θ3) = (Θ1 Θ2 Θ3)

⎡⎢⎣ 0 Z −X
−Z 0 −

√
−1φ

X
√
−1φ 0

⎤⎥⎦ ,
where

W := α2 +
√
−1β1, X := α2 +

√
−1β3,

Y := β2 −
√
−1α1, Z := β2 −

√
−1α3

and

φ := λu −
√
−1μ2, ψ := λv −

√
−1μ1.



By these relations, we obtain

WX + Y Z + L0e
2λ + φu − ψv = 0 (the equations of Gauss, Ricci),

Yv +
√
−1Xu = −

√
−1Wφ− Zψ,

Wv −
√
−1Zu =

√
−1Y φ−Xψ (the equations of Codazzi)

([4, 5]).

Referring to Sections 2, 3, we can obtain analogous results for time-like

surfaces in N .
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