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Introduction

In this work, we develop a comprehensive mathematical framework
unifying scalar Relativistic Quantum Mechanics with classical
electromagnetic field theory by means of Schwartz-linear algebra.
Building upon the foundations introduced by David Carf̀ı in
[1, 2, 3, 4], we construct a partial embedding of tempered scalar
distributions into spaces of tempered vector-valued fields that carry
natural Maxwellian structure.



The embedding operator J(η,f )

The key object of our study is an embedding operator J(η,f ),
Schwartz-linear (therefore linear and continuous), that maps a
large class of complex wave distributions

ψ ∈ V = S ′(M4,C)

into transverse vector fields

Fψ ∈ W = S ′(M4,C3)

via spectral synthesis with polarization.



Specifically, the embedding is constructed using a transverse,
right-handed, orthonormal polarization frame

f : k 7→ f (k) = (r(k), s(k)) ∈ R3 × R3,

defined on the dual space M∗
4 minus Πf , where Πf is a singular

plane and r is a normalized Killing vector field on the 2-sphere
extended omogeneously to the whole dual of Minkowski space-time
minus Πf .



The de Broglie-Maxwell-Killing’s basis

The de Broglie-Maxwell-Killing’s basis

w : M∗
4 \ Πf → W : k 7→ wk := ηk(r(k) + is(k)),

where
ηk = e i⟨k,x⟩

defines the de Broglie basis in the space of complex tempered wave
distributions, forms a Schwartz linearly independent system of
circularly polarized plane waves, generating a vast subspace S of
Schwartz-Maxwell electromagnetic field space W .



The map

J(η,f ) : ψ 7→ J(η,f )(ψ) =

∫
M∗

4

(ψ)ηw

embeds scalar wave distributions into the Maxwell-Schwartz field
space, provided that the complex wave distribution ψ admits a
momentum representation (ψ)η vanishing around the singular
plane Πf .



Eigenstructures of quantum observables

We show that the above embedding preserves eigenstructures of
quantum observables diagonal on η.
The momentum operators

p̂ = −iℏ∇

and energy operators
Ê = iℏ∂0,

of both spaces V and W , act compatibly through J(η,f ), and wk

are simultaneous eigenfunctions of p̂ and curl in W , with
eigenvalues ℏk⃗ and |k⃗ |, respectively.



The operator
ℏ curl

is therefore identified with the momentum magnitude operator on
the subspace

S = Sspan(w)

of the Maxwell-Schwartz space W .



General embeddings J(β,f )

Furthermore, the theory is extended to general embeddings J(β,f ),
constructed from arbitrary Schwartz bases β and smooth frame
fields

f : D → C3

with the same domain of β. These embeddings commute with all
observables diagonal in the basis β, yielding a functorial structure.



We also define position-space embeddings

Ij (j = 1, 2, 3)

using Dirac delta basis and demonstrate that they preserve position
eigenstates. This duality between frequency-space and
position-space embeddings reveals a deep symmetry between
quantum representations.



As an example, a geometric interpretation is introduced via the use
of Frenet frames along spatial curves, allowing for the
representation of localized electromagnetic waves carrying
geometric signatures of trajectories. Fields such as

δ0 ◦ γ · f ◦ γ : t 7→ δγ(t) · f (γ(t))

are shown to encode the curve γ via the support and polarization f .



The Maxwell-Schrödinger equation in W

The relativistic Schrödinger equation for photons, in tempered
distribution space, is recovered in the form

Êψ = c |p̂|ψ.



We show that in our subspace S the curl Maxwell’s equations can
be synthesized into the same Schrödinger’s form equation

ÊF = c|p̂|F ,

where Ê is the energy operator in our space W , perfectly
analogous to the energy operator in the space of complex
tempered distribution, p̂ is the momentum operator in W whose
magnitude operator equals the operator ℏcurl on the subspace S .



This shows that any wave distribution ψ, with a momentum
representation vanishing around the singular plane Πf , can be
smoothly interpreted as encoding an electromagnetic-type field.

A wave distribution ψ solves the massless relativistic Schrödinger
equation if an only if the corresponding electromagnetic-type field
Fψ solves the massless Schrödinger-Maxwell equation in W .



Analogously, we construct a faithfull representation of the
relativistic Schrödinger equation for massive particles in our space
W , showing that each wave distribution state of a massive particle
(complex field) can be smoothly interpreted as an
electromagnetic-like field in W .



Delta distributions
ψ = δ0(x ∓ ct)

are proven to be solutions of photons equation with spectral
support positive or negative, corresponding to right-moving and
left-moving massless particles, respectively.



The relation
m = ℏ|k⃗ |/c

defines the relativistic mass of a photon as a function of spectral
content. On the other hand, the dispersion relation of the massive
plane wave fields satisfying the Maxwell-Schrödinger equation, is
given by the Einstein’s energy relation.



Relativistic Schrödinger Equation for Massive Particles

In the massless case (photons), the relativistic Schrödinger
equation takes the form:

Êψ = c |p̂|ψ

which corresponds to the linear dispersion relation E = c |p⃗|.

To describe massive spin-0 particles, we adopt the Einstein
dispersion relation:

E 2 = |p⃗|2c2 +m2
0c

4 ⇒ E =
√

|p⃗|2c2 +m2
0c

4.



Operator Formulation

We define the relativistic Hamiltonian operator as:

Ĥm0 :=
√

c2p̂2 + (m2
0c

4)IV

which acts on the de Broglie basis by:

Ĥm0(ηk) = Hm0(ℏk⃗) · ηk , with Hm0(p⃗) =
√
|p⃗|2c2 +m2

0c
4

The above relativistic Hamiltonian operator is Schwartz-linear,
because it is constructed by multiplying a smooth real function
times the Schwartz basis η in momentum space.



Note on Linearity of Square Root Operators

The square root here is not a multiplicative function but rather an
operator-valued spectral function. As an example, consider the
linear endomorphism x 7→ mx on R. Its operator square root is
x 7→

√
mx , which is still linear. What would be nonlinear is the

function x 7→
√
mx , which is not our context. Hence, the

square-root operator applied to

c2(ℏK̂ )2 + (m2
0c

4)IV ,

and in the next analysis applied to

c2(ℏ curl)2 + (m2
0c

4)IW ,

remains linear.



Embedding into the Maxwell Space

Let Fψ ∈ W be the image of a scalar wave ψ under the vectorial
embedding:

J(η,f )(ψ) :=

∫
M∗

4

(ψ)η η · (r + is) =: Fψ

We define the Hamiltonian operator on W as:

Ĥm0 :=
√

c2(ℏ curl)2 + (m2
0c

4) IW

Then, Fψ satisfies the Maxwell-Schrödinger equation in W ,

iℏ∂tF = Ĥm0F

if and only if ψ satisfies the relativistic Schrödinger equation in V .



Spectral Behavior

Since
∇⃗ × wk = |k⃗|wk ,

we find:
Ĥm0(wk) = Hm0(ℏk⃗) · wk ,

for every k ∈ M∗
4 \ Πf .



Conclusion

Recapitulating, the relativistic dynamics of massive spin-0 particles
are captured, in the Maxwell field subspace S ⊂ W , by the
equation:

Ê (F ) =
√
c2(ℏ curl)2 + (m2

0c
4)IW (F ).

The massive Hamiltonian operator is Schwartz-linear and spectrally
defined, providing a consistent extension of our theory from
massless to massive quantum states.



Schwartz Framework as a Platform for Unified Dynamics

A Unified Architecture

We propose that the Maxwell–Schwartz–Minkowski structure

W := S ′(M4,C3)

serves as a central object for the unification of Einstein’s Relativity,
electromagnetism, and relativistic quantum mechanics on
Minkowski space-time.



▶ Relativistic Geometry: Encoded in the manifold M4 and its
tensor structures, including the Minkowski metric η, which
determines differential operators and Killing fields.

▶ Complex Quantum Dynamics: Encoded in the space of
tempered scalar distributions S ′(M4,C), with quantum
observables and spectral structures realized via
Schwartz-linear Algebra.

▶ Vectorial Embedding and Quantum Fields: The injections

J : S ′(M4,C) −→ W

map scalar states into electromagnetic-like vector fields,
compatible with the operator structure of Maxwell’s and
Schrödinger-type equations.



Extension to Curved Space-Time

The structure W remains viable under a metric deformation

η 7→ g ,

upon space-time, enabling the inclusion of gravitational fields.
Differential operators such as curlg and Laplace–Beltrami
derivatives deform consistently within W , providing a
gravitationally-aware Maxwell-Schrödinger Hamiltonian operator:

Ĥg :=
√

c2(ℏ curlg )2 + (m2
0c

4)IW .



Conclusion

This layered architecture allows us to view:

▶ (M4, g) as the relativistic pseudo-Riemannian geometric
background;

▶ S ′(M4,C) as the scalar quantum platform;

▶ W as the host for Maxwell-Quantum Field Theory;

▶ metric tensor g as the vehicle for including General Relativity.



Thus, Schwartz-linear algebra not only provides a language for
distribution waves and observables, but also a vessel for unifying
field-theoretic geometry and relativistic quantum theory.

This work lays a foundation for a full spectral theory of relativistic
fields within tempered distribution spaces, connecting canonical
Quantum Mechanics, Maxwell’s equations, and geometric field
structures under a unified, mathematically rigorous umbrella.
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