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Motivation

e For infinite-dimensional manifolds (Hilbert, Banach, and Fréchet
manifolds), we introduce a broader perspective on geodesic
preservation than the rigid notion of totally geodesic submanifolds:
subsets with the property that any geodesic of a spray starting in the
set stays within it for its entire domain.

e Our framework includes singular spaces (e.g., stratified spaces), which
are common in infinite dimensions. Such sets arise naturally even in
simple settings (e.g., linear spaces equipped with flat sprays).

e Regularity matters! singular sets may show sensitive dependence, for
example, on parametrization, whereas for differentiable submanifolds
invariance is preserved under reparametrization.



Sprays

In R"”, a symmetric bilinear form w : R” x R" — R can be entirely
reconstructed from its associated quadratic form a(t) = w(t, t) using the
polarization identity:

w(ty, t) = % (a(ty + o) — a(ty) — a(t2)) .

Interestingly, this lifts beautifully to differential geometry! Ambrose, Palais,
and Singer (1960) showed a similar natural bijection between:

1. Symmetric affine connections on a smooth manifold M. (analog of
symmetric bilinear forms).

2. Sprays on the tangent bundle T(TM). (analog of quadratic forms).



Spray Geometry

In finite-dimensional Finsler theory, Finsler structures are defined by
F:TM — [0, 00), which are

e Smooth on TM\{0}.

e Positively homogeneous and strongly convex on tangent spaces.

For our infinite-dimensional setting, we must give up the smoothness
requirement. This is crucial because smoothness is too restrictive for many
infinite-dimensional examples.

Unfortunately, this has a serious drawback: we cannot use standard Finsler
geometric methods to obtain an exponential function and, hence, a spray.
We do not require the existence of a spray induced by a Finsler (or
Riemannian) metric or compatibility with such a structure.



Michal-Bastiani Differentiability

Let ¢ : U — F be a mapping, where U is open in E, and E, F are locally
convex spaces.

e The directional derivative at x in direction h is
o1
Dpx(h) = lim —(p(x + th) — ¢(x))

e o is differentiable at x if Dy (h) exists for all h.

e ¢ is continuously differentiable (C!) if it's differentiable on U and the
map Dy: U x E— F, (x,h)— Dgy(h) is continuous.

e ©isa Cmapping (k e Nu {o0}) if it's continuous, all iterated
directional derivatives D/ (hy, ..., h;) exist for j < k, and all maps
Diyp: U x B/ — F are continuous.



Defining Sprays

A C"-mapping V: TM — T(TM) (1 < r < k — 2) is a second-order
C’"-vector field if 7, o V = Idppm. It is called symmetric if, in addition,
790V = Idpm, where 7o T(TM) - TM, 7: TM — M, M a manifold
modeled on F.

Spray: A second-order symmetric C"-vector field S: TM — T(TM):
1. S(sv) = (Ltm)«(sS(v)) for all s€ R and v € TM.
Lyy: TM — TM, v — sv.
Consider a chart (U, ¢) of M. The spray condition means that
(x,5v,sv, f(x,5v)) = (Ltm)«(sS(v))(x, v, sv,sf(x,v)) = (x,sv, sv,s*f(x, V))
f:UxF—F, f(x,sv)=sf(x,v)

indicating that for each fixed x € U, the function f(x,-) must be quadratic
in the velocity variables v.



Defining Geodesics via Sprays

A curve g: | € R — M is a geodesic of a spray S if its canonical lifting
g’ | — TM is an integral curve of the spray S.

This means the "acceleration” of the curve is determined by the spray:



Adjacent Cones

e The pseudo-distance of an element x € F to a subset S ¢ F with
respect to a seminorm ||-||¢  is defined by

drn(x,S) = inf{|Ix —yll¢,lyeS}

e Llet Sc M, seS. Avector ve TsM is called a first-order adjacent
tangent vector to S at s if there exists a chart (U, ¢) around s, s.t.:

Vne N, tI_i)r(r)L t1dg , (gp(s) + tDp(s)(v), (U n 5)) =

The set of all such v is denoted by TS.

o Let ve T S. A vector we T,(TM) is called a second-order adjacent
tangent vector to S at s (with v as its associated first-order vector) if
there exists a chart (U, ¢) about s, s.t. D(¢4),(w) = v, and

VneN, I|r(r)1 t- dpﬁ,,(( (s) + tvy + 32wy, 2), (UmS))

t—
Vp = D@s(v)aand Wep, = D(cp*)v(w) = (WW*717 W¢*72)' The set of
all such w is denoted by T2S.



Spray-Invariant Sets: Definition

Let S be a spray on M, and S © M a non-empty subset. A vector v € TM
is called a (T2S,S)-admissible vector if

T(v)eS and S(v)eT? S.

The set of all such vectors is denoted by As s and is called the
(T2S,S)-admissible set for S and S.

Connection to Geodesics: For a geodesic g: | c R — M, and a
non-empty closed subset S < M:

g(t)eS ifandonlyif g'(t)eAss forall tel.

Definition (Spray-Invariant Set)
A subset S © M is spray-invariant with respect to S if: For any geodesic

g: 1 — M of Ssuch that 0 e/, if g(0) € S and g’(0) € As s, then
g(t)e Sforall tel.



Example: Spray-Invariant Singular Space

Consider the Fréchet space £ = C*(IR,R) of smooth real-valued functions.
We use a flat spray S(f,v) = (f, v, v,0g), where geodesics are affine
paths:

~v(t) = f + tv.

Define the singular subset S =S, US_, where:
S, = {f e & | supp(f) = [0,0)}
S_={fe& |supp(f) < (—0,0]}

Although S, and S_ are smooth submanifolds, their union S is singular at
the zero function (not locally homeomorphic to a linear subspace near 0).

The admissible set As s is given by

Ass = U {(f,v) e TE|ve TSy or veTeS_}.
fesS

For any geodesic v(t) = f + tv with (f,v) € As s, we find that v(t) € S
for all t € R. Therefore, S is spray-invariant with respect to S.



Projective Equivalence & Singularities

Two sprays S and S on M are projectively equivalent if their geodesics
share the same paths, differing only by an orientation-preserving
reparametrization.

Formally: Any geodesic g of S can be reparametrized to be a geodesic of
S, and vice versa.

Key Observation for Singular Sets: The admissible sets Ag s and As s

for projectively equivalent sprays S and S generally differ when S is
singular.
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Example: Constructing a Projectively Equivalent Spray

Recall the singular set S =S, US_ from the previous example in
£ =C*[R,R).

Let x(x) be a standard smooth bump function supported in [—1,1].

e For any € > 0, define x.(x) = x(2x/e), supported in [—¢/2,¢/2].
e Define the scalar function a(f,v): TE — R by:

a(f,v) = JR Xe(x)v(x) dx.

e For a tangent vector v(x) = xs(x) with 0 < d < &/2, we have
a(f,v) > 0.
Now, define a new spray S as: §(f7 v) = (f,v,v,=2a(f,v) - v).
This spray Sis projectively equivalent to the flat spray
S(f,v) = (f,v,v,0¢) used in the previous example.
e This yields a projectively equivalent spray since it modifies the second

derivative by a multiple of the adjacent tangent vector.

S is not spray-invariant under S.
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Theorem: Totally Geodesic Submanifolds

Theorem (Characterization of Totally Geodesic Submanifolds)

Let S be a spray on a manifold M, and let S be a C3-submanifold of M.
Then S is totally geodesic if and only if As s = TS.

Corollary

Let M be a manifold such that, given any two distinct points in M, there is
a unique geodesic passing through them. Let S = M be a closed
C3-submanifold with the property that, locally, given any two distinct
points in S, the unique geodesic segment in M connecting them lies
entirely in S. Then S is a totally geodesic submanifold of M.
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Example: Spray-Invariant but Not Totally Geodesic

Let M = C*(R,R?) be the Fréchet space of smooth R?-valued functions.

Equipped with the flat spray S(f,v) = (f, v, v, (0,0)), where (0,0) is the
zero function in M. Consider the subset S © M defined by

S:={feM|f=(h h? for some he E = C°(R,R)}.
The admissible set As s for this spray and subset is
Ass = {(f,00e TM | f=(hh*), he E}.
The tangent bundle TS is

TS = {(f,v) e TM | f = (h,h?), v = (u,2hu)) for some u € E}.

S is spray-invariant. However, as TS # As s, this means S is NOT totally
geodesic.
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Example: A Totally Geodesic Submanifold

Let M = C*(R",R) be the Fréchet space of smooth real-valued
functions on R". We use the flat spray S(f,v) = (f, v, v,0x:), where
geodesics are affine paths:

~v(t) = f + tv.
Define the subset S © M as the set of constant functions on R":
S:={fe C®R",R)|3ceR such that f(x) = ¢, VxeR"}.

The set S can be identified with R. It's a closed linear subspace of M,
making it a closed C*-submanifold.

Since all conditions of the corollary are satisfied (unique geodesics, and
locally, geodesics between points in S stay in S), S is a totally geodesic
submanifold.
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Automorphisms of Sprays

A Ck-automorphism ¢ of M is an automorphism of the spray S if
¢**OSO¢;1 =S.

These automorphisms form a group under composition, denoted by
Aut(M,S). They preserve the spray’s structure.

Theorem (Automorphisms Preserve Spray-Invariance)

Let S € M be a non-empty closed subset that is spray-invariant with

respect to S, and let ¢ € Aut(M,S). Then ¢(S) is also spray-invariant
with respect to S.
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Example: Translation Automorphism

Recall the singular spray-invariant set S =S, U S_ from previous
examples in the Fréchet space £ = C*(R,R), with the flat spray S.

e For a fixed a € R, a # 0, consider the translation map:
Ga: E—E,  ¢a(f)(x) = f(x — a).

e This translation map ¢, is an automorphism of the flat spray S.

o Geodesics of the flat spray are affine paths: v(t) = f + tv.

e Applying ¢, to a geodesic just translates the function along the x-axis:

$a(1(1))(x) = Y(t)(x — a) = f(x — a) + tv(x — a).
e This transformed curve is still an affine path in £ and thus a geodesic
of the flat spray.
e Since S is spray-invariant and ¢, € Aut(&,S), by the theorem:

e The translated set ¢,(S) is also spray-invariant.
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Invariance of As s

Key Question: If S is spray-invariant, does the spray S (regarded as a
first-order vector field on TM) remain second-order adjacent tangent to its
own admissible set As 57

Why this matters: This reformulation reduces the problem from
analyzing second-order dynamics on M to studying first-order dynamics on
TM, which can be more tractable.

Potential Tool: The Nagumo-Brezis Theorem provides a criterion for
determining the invariance of sets under the flow of a vector field.

e The theorem'’s classical formulation applies primarily to Banach
manifolds.

e It does not generalize straightforwardly to arbitrary Fréchet manifolds,
posing a significant hurdle for our infinite-dimensional setting. This
theorem holds true for the category of MCK-Fréchet manifolds under
nuclearity assumptions.
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Bounded Differentiability: Foundations

To define MC*-differentiability (defined by Olaf Miiller, 2006) in Fréchet
spaces E and F:

e We equip E and F with a specific translation-invariant metric:

otey) = sup XYl
FX,y) =sup o ———————.
neN 2" L+ [|x =yl ,

e We consider the space L(E,F) of linear mappings L: E — F that are
(globally) Lipschitz continuous with respect to these metrics.

e The Lipschitz constant of a linear map L is

: me (L(x), OF)
Lip(L) = ——2 7 < .
in( ) Xeitj{%g me (x, Og)

e We equip L(E, F) with its own translation-invariant metric:

(L, H) — Lip(L — H).
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Bounded Differentiability: Definition

o Let o: UC E — F be a Cl-mapping (in the sense of
Michal-Bastiani).
e ¢ is called bounded differentiable (or MC*-differentiable) if

1. The directional derivative Dp(x) (which is a linear map from E to F)
belongs to the space of Lipschitz linear maps L(E, F) for all x € U.

2. The induced mapping Dy: U — L(E, F), which sends x — Dy(x), is
continuous with respect to the defined metrics on U and L(E,F).

In essence:

e This differentiability requires not just existence of directional
derivatives, but also that these derivatives are Lipschitz continuous
linear maps, and that the derivative mapping itself is continuous in a
specific metric.

e This is a stronger form of differentiability.
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Nuclear Spaces

Let (B1,| - |1) and (Ba,| - |2) be Banach spaces. A linear operator
T : By — By is called nuclear if it can be written in the form:

T(x) = Z >‘J'<X7Xj>yf

j=1

(-, > is the duality pairing between B; and its dual B;.

xj € By with | x; [1< 1.

yj € By with | yj o< 1.

e ); are complex numbers such that >}, | A; [< 0.

A nuclear space is a locally convex topological vector space such that every
continuous linear map to a Banach space is nuclear.
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Flow-Invariance & The Nagumo-Brezis Theorem

e Let Ac M and V be an MC!-vector field on M.
e The set A is called flow-invariant with respect to V if:

e For any integral curve /(t) of V, if (0) € A, then (t) € A for all
t > 0 within the curve's domain.

Theorem (Nagumo-Brezis Theorem, K.E., 2024)

Let M be a nuclear MC¥-Fréchet manifold, and let V: M — TM be an
MC!-vector field. Let A= M be closed. Then, A is flow-invariant with
respect to V if and only if for each x € M, there exists a chart (U, ¢)
around x, such that:

lim t'mg (¢(x) + tDB(x)(V(x)), p(U n A)) = 0.

t—0+t

This condition essentially means V(x) is an adjacent tangent vector to

o(Un A) at ¢(x).
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Linking Spray-Invariance to Adjacent Tangency

Recall: The question was: If S is spray-invariant, does S (as a vector field
on TM) remain second-order adjacent tangent to As s?

Theorem

Let M be a nuclear MCK-Fréchet manifold, and let S © M be a subset
such that As s is non-empty and closed. Then, the following are
equivalent:

1. S is spray-invariant with respect to S.

2. S is adjacent tangent to As s when regarded as a vector field on TM.

Theorem

Let B be a Ck-Banach manifold, k > 4, and S — B a subset such that
As,s is non-empty and closed. Then, S is spray-invariant if and only if S is
adjacent tangent to As s when regarded as a vector field on TB.
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Example: Spray-Invariant Set of Non-Negative Functions

Consider the Banach manifold M = C¥(S1,R) of k-times differentiable
functions on the circle S'. We equip it with the flat spray S, whose
geodesics are affine paths:

v(t)=Ff+tv, feM, veTrM.
Let S © M be the closed subset of non-negative functions:
S={feM|f(®) =0, Voe S'}.

When viewed as a vector field on TM, the spray S satisfies S(v) = 0 for
all ve AS,S-

e Since the zero vector lies in every adjacent cone, this means S is
adjacent tangent to As s.

As S is adjacent tangent to As s (and As s is closed), this implies that S
is spray-invariant. The set S is also a convex cone with vertex at the zero
function.
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Theorem: Transversality and Spray-Invariance

Theorem

Let M be a nuclear MCK-Fréchet manifold. Let S be a closed
MC3-submanifold of M (as introduced in previous examples).

If the spray S restricted to TS is transverse to T(TS), i.e.,
S| shT(TS),
then S is spray-invariant with respect to S if and only if

Vv e S(T(TS)), DS(v)(S(v)) € Ts(y)(T(TS)). (1)
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Geodesic Flow Invariance Theorem

e Assume B is a Banach manifold of class C¥ (k > 4), and S is a spray
on B of class C2.

e The geodesic flow is the mapping:
¢,: TB - TB

that satisfies ®,(v) = g.(t), where g,: | — B is the unique geodesic
with initial tangent v € TB.

Theorem

A closed subset S — B is spray-invariant if and only if its admissible set
As,s is invariant under the geodesic flow ®,.
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Example: Constant Maps to a Great Circle

Consider the Hilbert manifold M = L2(S!, S?), the space of
square-integrable maps from the circle S* into the 2-sphere S2. The
tangent space at f € M is:

TeM = L*(S', T S?).
M carries the natural L2-Riemannian metric:

(v, wyr = j (v (0), w(6))s,0 r(8y) 0.

Let S be the canonical spray associated with this metric.

Let C = S? be a great circle (a totally geodesic submanifold of $2).
Define the closed subset

S = {f e M|3pe C such that f(#) = p for almost all § € S*}. Its
admissible set As s is invariant under the geodesic flow ®;. Therefore, by
the Theorem, S is spray-invariant. However, S is NOT totally geodesic.

26



Example: Space of Finite Sequences (/) - Setup

Let H = (2, the separable Hilbert space of square-summable real
sequences, with the standard inner product:

0
oGy = Xivie
i=1

Let {en}nen be its standard orthonormal basis. Define the subset
S = {x € H | only finitely many coordinates of x are nonzero}.

e This is the space of finite sequences.
e It can be expressed as a countable union of finite-dimensional linear
subspaces:

[e¢]
S = U Hy, where Hy == span(ey,...,ek).
k=1
Consider the flat spray of £?. Let x € S and v € T, S. Then there exists a
k such that both x, v € H,. The geodesic starting at x with tangent v is
given by v(t) = x + tv. Since Hi is a linear subspace, v(t) € Hy = S for
all t e R. S is spray-invariant.
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Example: Stratification

e We consider a stratification of S into strata S;:
Si = H\H;_1,

e We now verify the frontier axiom for this stratification, where the
closure is taken with respect to the topology induced from ¢2.
e The closure of a stratum S; in S is simply S, = H;.
e Case 1: /i<
Si = H:. Since H; c H;, but H; contains vectors with at most i
nonzero components, while S; contains vectors with exactly j > i

nonzero components, it follows that H; n S; = ¢#. Thus, S; " S; = (.

e Case 2: /| =
Trivially, Si=H;,and NS =S # . Furthermore, S; S; by
definition.

e Case 3: / >
We have H; c H;, and S; = H\H;—1 = H;. Hence, S;n S; = S; # &,
and S; c S;.
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G-Invariant Sprays

Let G be a smooth Lie group acting smoothly on a smooth Banach
manifold B. A spray S on B is called G-invariant if, for every g € G, the
action of g on B lifts to a smooth transformation T: TB — TB such
that S is preserved under this lifted action. More precisely, for all g € G,
the following diagram commutes:

8 2%, TR

F Ok
TB —% TB
his condition means that for any v € TB, we have
T(Tg)(S(v)) = S(Tg(v)).
For a point x € B, the isotropy group (or stabilizer) of x, denoted by G,

is the subgroup of G consisting of all elements g € G that leave x
unchanged under the group action:

Gy={geG|g -x=x}
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Definition of a Slice: G-Action

A slice at x € B is a submanifold V < B containing x such that

1. H-Invariance: h-v e V forall he H and v € V, where H = G,.

2. Local Triviality: There exists a G-equivariant diffeomorphism
d: GxyV—->U

onto a G-equivariant open neighborhood U < B of the orbit G - x,
such that ®([g,v]) = g v and ®([e, x]) = x, where e is the identity
in G.

3. Transversality:
3.1 T,V n Ty(G - x) = {0}.

3.2 T,V is a closed subspace of T«xB such that T\B = T(G - x) ® T« V.

3.3 The map a: G x V — B, given by a(g,v) = g - v, has a derivative at

(e,x),
T(e,x)a: TeG x TyV — 'I‘XB7

which is surjective, with kernel complemented in T.G x T, V.
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Theorem: Orbit Type Stratification & Spray-Invariance

Theorem

Let G be a finite-dimensional smooth Lie group acting smoothly on a
smooth Banach manifold B. Assume that a smooth spray S on B is
G-invariant. And assume that for every x € B, there exists a G-equivariant
neighborhood U of x and a G-equivariant diffeomorphism

d: GxyV U

where V is a slice at x and H = G is the isotropy subgroup. Then the
orbit type decomposition of B, given by

B=|JB), whereB() ={xeB: G =Hj},
[H]

defines a stratification of B such that each stratum By is spray-invariant.
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Nuance: Strata vs. Individual Orbits

An important distinction arises from Theorem 10:

e The theorem guarantees that geodesics starting in an orbit type
stratum By remain in that stratum.

e This means if you start at a point x with isotropy group H, the
geodesic through x will always stay within the set of points whose
isotropy group is isomorphic to H.

e However, this does not imply that geodesics remain in the
same individual orbit.

e A geodesic starting at x might move to other points y within the
same stratum By such that y is not in the same orbit as x (i.e.,
y ¢ G- x), but y still has an isotropy group isomorphic to H.

e Spray-invariance applies at the level of strata (sets of points with
isomorphic isotropy groups), not necessarily at the finer level of
individual orbits.
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Thank You!
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