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Motivation

� For infinite-dimensional manifolds (Hilbert, Banach, and Fréchet

manifolds), we introduce a broader perspective on geodesic

preservation than the rigid notion of totally geodesic submanifolds:

subsets with the property that any geodesic of a spray starting in the

set stays within it for its entire domain.

� Our framework includes singular spaces (e.g., stratified spaces), which

are common in infinite dimensions. Such sets arise naturally even in

simple settings (e.g., linear spaces equipped with flat sprays).

� Regularity matters! singular sets may show sensitive dependence, for

example, on parametrization, whereas for differentiable submanifolds

invariance is preserved under reparametrization.
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Sprays

In Rn, a symmetric bilinear form ω : Rn ˆ Rn Ñ R can be entirely

reconstructed from its associated quadratic form aptq “ ωpt, tq using the

polarization identity:

ωpt1, t2q “
1

2
papt1 ` t2q ´ apt1q ´ apt2qq .

Interestingly, this lifts beautifully to differential geometry! Ambrose, Palais,

and Singer (1960) showed a similar natural bijection between:

1. Symmetric affine connections on a smooth manifold M. (analog of

symmetric bilinear forms).

2. Sprays on the tangent bundle TpTMq. (analog of quadratic forms).
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Spray Geometry

In finite-dimensional Finsler theory, Finsler structures are defined by

F : TM Ñ r0,8q, which are

� Smooth on TMzt0u.

� Positively homogeneous and strongly convex on tangent spaces.

For our infinite-dimensional setting, we must give up the smoothness

requirement. This is crucial because smoothness is too restrictive for many

infinite-dimensional examples.

Unfortunately, this has a serious drawback: we cannot use standard Finsler

geometric methods to obtain an exponential function and, hence, a spray.

We do not require the existence of a spray induced by a Finsler (or

Riemannian) metric or compatibility with such a structure.
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Michal–Bastiani Differentiability

Let φ : U Ñ F be a mapping, where U is open in E, and E, F are locally

convex spaces.

� The directional derivative at x in direction h is

Dφxphq :“ lim
tÑ0

1

t
pφpx ` thq ´ φpxqq

� φ is differentiable at x if Dφxphq exists for all h.

� φ is continuously differentiable (C 1) if it’s differentiable on U and the

map Dφ : U ˆ E Ñ F, px , hq ÞÑ Dφxphq is continuous.

� φ is a C k -mapping (k P N Y t8u) if it’s continuous, all iterated

directional derivatives D jφxph1, . . . , hjq exist for j ď k, and all maps

D jφ : U ˆ Ej Ñ F are continuous.
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Defining Sprays

A C r -mapping V : TM Ñ TpTMq (1 ď r ď k ´ 2) is a second-order

C r -vector field if τ˚ ˝ V “ IdTM. It is called symmetric if, in addition,

τ2 ˝ V “ IdTM, where τ2 : TpTMq Ñ TM, τ : TM Ñ M , M a manifold

modeled on F.

Spray: A second-order symmetric C r -vector field S : TM Ñ TpTMq:

1. Spsvq “ pLTMq˚psSpvqq for all s P R and v P TM.

LTM : TM Ñ TM, v ÞÑ sv .

Consider a chart pU, φq of M. The spray condition means that

px , sv , sv , f px , svqq “ pLTMq˚psSpvqqpx , v , sv , sf px , vqq “ px , sv , sv , s2f px , vqq

f : U ˆ F Ñ F, f px , svq “ s2f px , vq

indicating that for each fixed x P U, the function f px , ¨q must be quadratic

in the velocity variables v .
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Defining Geodesics via Sprays

A curve g : I Ď R Ñ M is a geodesic of a spray S if its canonical lifting

g 1 : I Ñ TM is an integral curve of the spray S.

This means the ”acceleration” of the curve is determined by the spray:

g2 “ Spg 1q
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Adjacent Cones

� The pseudo-distance of an element x P F to a subset S Ă F with

respect to a seminorm ∥¨∥F,n is defined by

dF,npx ,Sq :“ inft ∥x ´ y∥F,n | y P S u.

� Let S Ă M, s P S . A vector v P TsM is called a first-order adjacent

tangent vector to S at s if there exists a chart pU, φq around s, s.t.:

@n P N, lim
tÑ0`

t´1dF,n

´

φpsq ` tDφpsqpvq, φpU X Sq

¯

“ 0.

The set of all such v is denoted by TsS .

� Let v P TsS . A vector w P Tv pTMq is called a second-order adjacent

tangent vector to S at s (with v as its associated first-order vector) if

there exists a chart pU, φq about s, s.t. Dpφ˚qv pwq “ v , and

@n P N, lim
tÑ0`

t´2dF,n

´

`

φpsq ` tvφ ` 1
2 t

2wφ˚,2

˘

, φpU X Sq

¯

“ 0.

vφ :“ Dφspvq, and wφ˚
:“ Dpφ˚qv pwq “ pwφ˚,1,wφ˚,2q. The set of

all such w is denoted by T2
sS .
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Spray-Invariant Sets: Definition

Let S be a spray on M, and S Ă M a non-empty subset. A vector v P TM

is called a pT2S ,Sq-admissible vector if

τpvq P S and Spvq P T2
τpvq

S .

The set of all such vectors is denoted by AS,S and is called the

pT2S ,Sq-admissible set for S and S .

Connection to Geodesics: For a geodesic g : I Ă R Ñ M, and a

non-empty closed subset S Ă M:

gptq P S if and only if g 1ptq P AS,S for all t P I .

Definition (Spray-Invariant Set)
A subset S Ă M is spray-invariant with respect to S if: For any geodesic

g : I Ñ M of S such that 0 P I , if gp0q P S and g 1p0q P AS,S , then

gptq P S for all t P I .
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Example: Spray-Invariant Singular Space

Consider the Fréchet space E “ C8pR,Rq of smooth real-valued functions.

We use a flat spray Spf , vq “ pf , v , v , 0Eq, where geodesics are affine

paths:

γptq “ f ` tv .

Define the singular subset S “ S` Y S´, where:

S` :“ tf P E | supppf q Ď r0,8qu

S´ :“ tf P E | supppf q Ď p´8, 0su

Although S` and S´ are smooth submanifolds, their union S is singular at

the zero function (not locally homeomorphic to a linear subspace near 0).

The admissible set AS,S is given by

AS,S “
ď

f PS

tpf , vq P TE | v P Tf S` or v P Tf S´u .

For any geodesic γptq “ f ` tv with pf , vq P AS,S, we find that γptq P S

for all t P R. Therefore, S is spray-invariant with respect to S.
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Projective Equivalence & Singularities

Two sprays S and S on M are projectively equivalent if their geodesics

share the same paths, differing only by an orientation-preserving

reparametrization.

Formally: Any geodesic g of S can be reparametrized to be a geodesic of

S, and vice versa.

Key Observation for Singular Sets: The admissible sets AS,S and AS,S

for projectively equivalent sprays S and S generally differ when S is

singular.
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Example: Constructing a Projectively Equivalent Spray

Recall the singular set S “ S` Y S´ from the previous example in

E “ C8pR,Rq.

� Let χpxq be a standard smooth bump function supported in r´1, 1s.

� For any ε ą 0, define χεpxq “ χp2x{εq, supported in r´ε{2, ε{2s.

� Define the scalar function αpf , vq : TE Ñ R by:

αpf , vq :“

ż

R
χεpxqvpxq dx .

� For a tangent vector vpxq “ χδpxq with 0 ă δ ď ε{2, we have

αpf , vq ą 0.

� Now, define a new spray S̃ as: S̃pf , vq :“ pf , v , v ,´2αpf , vq ¨ vq.

� This spray S̃ is projectively equivalent to the flat spray

Spf , vq “ pf , v , v , 0Eq used in the previous example.

� This yields a projectively equivalent spray since it modifies the second

derivative by a multiple of the adjacent tangent vector.

S is not spray-invariant under S̃.
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Theorem: Totally Geodesic Submanifolds

Theorem (Characterization of Totally Geodesic Submanifolds)

Let S be a spray on a manifold M, and let S be a C 3-submanifold of M.

Then S is totally geodesic if and only if AS,S “ TS.

Corollary

Let M be a manifold such that, given any two distinct points in M, there is

a unique geodesic passing through them. Let S Ă M be a closed

C 3-submanifold with the property that, locally, given any two distinct

points in S, the unique geodesic segment in M connecting them lies

entirely in S. Then S is a totally geodesic submanifold of M.
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Example: Spray-Invariant but Not Totally Geodesic

Let M “ C8pR,R2q be the Fréchet space of smooth R2-valued functions.

Equipped with the flat spray Spf , vq “ pf , v , v , p0, 0qq, where p0, 0q is the

zero function in M. Consider the subset S Ď M defined by

S :“ tf P M | f “ ph, h2q for some h P E “ C8pR,Rqu.

The admissible set AS,S for this spray and subset is

AS,S “ tpf , 0q P TM | f “ ph, h2q, h P Eu.

The tangent bundle TS is

TS “ tpf , vq P TM | f “ ph, h2q, v “ pu, 2huqq for some u P Eu.

S is spray-invariant. However, as TS ‰ AS,S , this means S is NOT totally

geodesic.
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Example: A Totally Geodesic Submanifold

Let M “ C8pRn,Rq be the Fréchet space of smooth real-valued

functions on Rn. We use the flat spray Spf , vq “ pf , v , v , 0Mq, where

geodesics are affine paths:

γptq “ f ` tv .

Define the subset S Ă M as the set of constant functions on Rn:

S :“ tf P C8pRn,Rq | D c P R such that f pxq “ c , @x P Rnu .

The set S can be identified with R. It’s a closed linear subspace of M,

making it a closed C8-submanifold.

Since all conditions of the corollary are satisfied (unique geodesics, and

locally, geodesics between points in S stay in S), S is a totally geodesic

submanifold.
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Automorphisms of Sprays

A C k -automorphism ϕ of M is an automorphism of the spray S if

ϕ˚˚ ˝ S ˝ ϕ´1
˚ “ S.

These automorphisms form a group under composition, denoted by

AutpM,Sq. They preserve the spray’s structure.

Theorem (Automorphisms Preserve Spray-Invariance)

Let S Ă M be a non-empty closed subset that is spray-invariant with

respect to S, and let ϕ P AutpM,Sq. Then ϕpSq is also spray-invariant

with respect to S.
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Example: Translation Automorphism

Recall the singular spray-invariant set S “ S` Y S´ from previous

examples in the Fréchet space E “ C8pR,Rq, with the flat spray S.

� For a fixed a P R, a ‰ 0, consider the translation map:

ϕa : E Ñ E , ϕapf qpxq “ f px ´ aq.

� This translation map ϕa is an automorphism of the flat spray S.

� Geodesics of the flat spray are affine paths: γptq “ f ` tv .

� Applying ϕa to a geodesic just translates the function along the x-axis:

ϕapγptqqpxq “ γptqpx ´ aq “ f px ´ aq ` tvpx ´ aq.

� This transformed curve is still an affine path in E and thus a geodesic

of the flat spray.

� Since S is spray-invariant and ϕa P AutpE ,Sq, by the theorem:

� The translated set ϕapSq is also spray-invariant.
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Invariance of AS,S

Key Question: If S is spray-invariant, does the spray S (regarded as a

first-order vector field on TM) remain second-order adjacent tangent to its

own admissible set AS,S?

Why this matters: This reformulation reduces the problem from

analyzing second-order dynamics on M to studying first-order dynamics on

TM, which can be more tractable.

Potential Tool: The Nagumo-Brezis Theorem provides a criterion for

determining the invariance of sets under the flow of a vector field.

� The theorem’s classical formulation applies primarily to Banach

manifolds.

� It does not generalize straightforwardly to arbitrary Fréchet manifolds,

posing a significant hurdle for our infinite-dimensional setting. This

theorem holds true for the category of MCk -Fréchet manifolds under

nuclearity assumptions.
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Bounded Differentiability: Foundations

To define MCk -differentiability (defined by Olaf Müller, 2006) in Fréchet

spaces E and F:

� We equip E and F with a specific translation-invariant metric:

mFpx , yq “ sup
nPN

1

2n
∥x ´ y∥F ,n

1 ` ∥x ´ y∥F ,n
.

� We consider the space LpE,Fq of linear mappings L : E Ñ F that are

(globally) Lipschitz continuous with respect to these metrics.

� The Lipschitz constant of a linear map L is

LippLq :“ sup
xPEzt0Eu

mFpLpxq, 0Fq

mEpx , 0Eq
ă 8.

� We equip LpE,Fq with its own translation-invariant metric:

pL,Hq ÞÑ LippL ´ Hq.
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Bounded Differentiability: Definition

� Let φ : U Ď E Ñ F be a C 1-mapping (in the sense of

Michal-Bastiani).

� φ is called bounded differentiable (or MC1-differentiable) if

1. The directional derivative Dφpxq (which is a linear map from E to F)

belongs to the space of Lipschitz linear maps LpE,Fq for all x P U.

2. The induced mapping Dφ : U Ñ LpE,Fq, which sends x ÞÑ Dφpxq, is

continuous with respect to the defined metrics on U and LpE,Fq.

In essence:

� This differentiability requires not just existence of directional

derivatives, but also that these derivatives are Lipschitz continuous

linear maps, and that the derivative mapping itself is continuous in a

specific metric.

� This is a stronger form of differentiability.
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Nuclear Spaces

Let pB1, | ¨ |1q and pB2, | ¨ |2q be Banach spaces. A linear operator

T : B1 Ñ B2 is called nuclear if it can be written in the form:

T pxq “

8
ÿ

j“1

λjxx , xjyyj

� x¨, ¨y is the duality pairing between B1 and its dual B 1
1.

� xj P B 1
1 with | xj |11ď 1.

� yj P B2 with | yj |2ď 1.

� λj are complex numbers such that
ř

j | λj |ă 8.

A nuclear space is a locally convex topological vector space such that every

continuous linear map to a Banach space is nuclear.
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Flow-Invariance & The Nagumo-Brezis Theorem

� Let A Ă M and V be an MC1-vector field on M.

� The set A is called flow-invariant with respect to V if:

� For any integral curve I ptq of V, if I p0q P A, then I ptq P A for all

t ě 0 within the curve’s domain.

Theorem (Nagumo-Brezis Theorem, K.E., 2024)

Let M be a nuclear MCk -Fréchet manifold, and let V : M Ñ TM be an

MC1-vector field. Let A Ă M be closed. Then, A is flow-invariant with

respect to V if and only if for each x P M, there exists a chart pU, ϕq

around x, such that:

lim
tÑ0`

t´1
mF pϕpxq ` tDϕpxqpVpxqq, ϕpU X Aqq “ 0.

This condition essentially means Vpxq is an adjacent tangent vector to

ϕpU X Aq at ϕpxq.
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Linking Spray-Invariance to Adjacent Tangency

Recall: The question was: If S is spray-invariant, does S (as a vector field

on TM) remain second-order adjacent tangent to AS,S?

Theorem

Let M be a nuclear MCk -Fréchet manifold, and let S Ă M be a subset

such that AS,S is non-empty and closed. Then, the following are

equivalent:

1. S is spray-invariant with respect to S.

2. S is adjacent tangent to AS,S when regarded as a vector field on TM.

Theorem

Let B be a C k -Banach manifold, k ě 4, and S Ă B a subset such that

AS,S is non-empty and closed. Then, S is spray-invariant if and only if S is

adjacent tangent to AS,S when regarded as a vector field on TB.
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Example: Spray-Invariant Set of Non-Negative Functions

Consider the Banach manifold M “ C kpS1,Rq of k-times differentiable

functions on the circle S1. We equip it with the flat spray S, whose

geodesics are affine paths:

γptq “ f ` tv , f P M, v P TfM.

Let S Ă M be the closed subset of non-negative functions:

S :“
␣

f P M | f pθq ě 0, @θ P S1
(

.

When viewed as a vector field on TM, the spray S satisfies Spvq “ 0 for

all v P AS,S .

� Since the zero vector lies in every adjacent cone, this means S is

adjacent tangent to AS,S .

As S is adjacent tangent to AS,S (and AS,S is closed), this implies that S

is spray-invariant. The set S is also a convex cone with vertex at the zero

function.
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Theorem: Transversality and Spray-Invariance

Theorem

Let M be a nuclear MCk -Fréchet manifold. Let S be a closed

MC3-submanifold of M (as introduced in previous examples).

If the spray S restricted to TS is transverse to TpTSq, i.e.,

S
ˇ

ˇ

TS
&TpTSq,

then S is spray-invariant with respect to S if and only if

@v P SpTpTSqq, DSpvqpSpvqq P TSpvqpTpTSqq. (1)
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Geodesic Flow Invariance Theorem

� Assume B is a Banach manifold of class C k (k ě 4), and S is a spray

on B of class C 2.

� The geodesic flow is the mapping:

Φt : TB Ñ TB

that satisfies Φtpvq “ g 1
v ptq, where gv : I Ñ B is the unique geodesic

with initial tangent v P TB.

Theorem

A closed subset S Ă B is spray-invariant if and only if its admissible set

AS,S is invariant under the geodesic flow Φt .
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Example: Constant Maps to a Great Circle

Consider the Hilbert manifold M “ L2pS1,S2q, the space of

square-integrable maps from the circle S1 into the 2-sphere S2. The

tangent space at f P M is:

TfM – L2pS1,Tf pθqS
2q.

M carries the natural L2-Riemannian metric:

xv ,wyf “

ż

S1

xvpθq,wpθqygS2 pf pθqq dθ.

Let S be the canonical spray associated with this metric.

Let C Ă S2 be a great circle (a totally geodesic submanifold of S2).

Define the closed subset

S :“
␣

f P M
ˇ

ˇ Dp P C such that f pθq “ p for almost all θ P S1
(

. Its

admissible set AS,S is invariant under the geodesic flow Φt . Therefore, by

the Theorem, S is spray-invariant. However, S is NOT totally geodesic.
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Example: Space of Finite Sequences (ℓ2) - Setup

Let H “ ℓ2, the separable Hilbert space of square-summable real

sequences, with the standard inner product:

xx , yy “

8
ÿ

i“1

xiyi .

Let tenunPN be its standard orthonormal basis. Define the subset

S :“ tx P H | only finitely many coordinates of x are nonzerou.

� This is the space of finite sequences.

� It can be expressed as a countable union of finite-dimensional linear

subspaces:

S “

8
ď

k“1

Hk , where Hk :“ spanpe1, . . . , ekq.

Consider the flat spray of ℓ2. Let x P S and v P TxS. Then there exists a

k such that both x , v P Hk . The geodesic starting at x with tangent v is

given by γptq “ x ` tv . Since Hk is a linear subspace, γptq P Hk Ă S for

all t P R. S is spray-invariant. 27



Example: Stratification

� We consider a stratification of S into strata Si :

Si “ HizHi´1,

� We now verify the frontier axiom for this stratification, where the

closure is taken with respect to the topology induced from ℓ2.

� The closure of a stratum Si in S is simply Si “ Hi .

� Case 1: i ă j

Si “ Hi . Since Hi Ă Hj , but Hi contains vectors with at most i

nonzero components, while Sj contains vectors with exactly j ą i

nonzero components, it follows that Hi X Sj “ H. Thus, Si X Sj “ H.

� Case 2: i “ j

Trivially, Si “ Hi , and Si X Si “ Si ‰ H. Furthermore, Si Ă Si by

definition.

� Case 3: i ą j

We have Hj Ă Hi , and Sj “ HjzHj´1 Ă Hi . Hence, Si X Sj “ Sj ‰ H,

and Sj Ă Si .
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G-Invariant Sprays

Let G be a smooth Lie group acting smoothly on a smooth Banach

manifold B. A spray S on B is called G-invariant if, for every g P G , the

action of g on B lifts to a smooth transformation Tg : TB Ñ TB such

that S is preserved under this lifted action. More precisely, for all g P G ,

the following diagram commutes:

TTB
TpTgq

ÝÝÝÝÑ TTB
§

§

§

đ

S

§

§

§

đ

S

TB
Tg

ÝÑ TB

his condition means that for any v P TB, we have

TpTgqpSpvqq “ SpTgpvqq.

For a point x P B, the isotropy group (or stabilizer) of x , denoted by Gx ,

is the subgroup of G consisting of all elements g P G that leave x

unchanged under the group action:

Gx “ tg P G | g ¨ x “ xu. 29



Definition of a Slice: G -Action

A slice at x P B is a submanifold V Ă B containing x such that

1. H-Invariance: h ¨ v P V for all h P H and v P V , where H “ Gx .

2. Local Triviality: There exists a G -equivariant diffeomorphism

Φ: G ˆH V Ñ U

onto a G -equivariant open neighborhood U Ă B of the orbit G ¨ x ,

such that Φprg , v sq “ g ¨ v and Φpre, xsq “ x , where e is the identity

in G .

3. Transversality:

3.1 TxV X TxpG ¨ xq “ t0u.

3.2 TxV is a closed subspace of TxB such that TxB “ TxpG ¨ xq ‘ TxV .

3.3 The map α : G ˆ V Ñ B, given by αpg , vq “ g ¨ v , has a derivative at

pe, xq,

Tpe,xqα : TeG ˆ TxV Ñ TxB,

which is surjective, with kernel complemented in TeG ˆ TxV .
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Theorem: Orbit Type Stratification & Spray-Invariance

Theorem

Let G be a finite-dimensional smooth Lie group acting smoothly on a

smooth Banach manifold B. Assume that a smooth spray S on B is

G-invariant. And assume that for every x P B, there exists a G-equivariant

neighborhood U of x and a G-equivariant diffeomorphism

Φ: G ˆH V Ñ U

where V is a slice at x and H “ Gx is the isotropy subgroup. Then the

orbit type decomposition of B, given by

B “
ď

rHs

BpHq, where BpHq “ tx P B: Gx – Hu,

defines a stratification of B such that each stratum BpHq is spray-invariant.
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Nuance: Strata vs. Individual Orbits

An important distinction arises from Theorem 10:

� The theorem guarantees that geodesics starting in an orbit type

stratum BpHq remain in that stratum.

� This means if you start at a point x with isotropy group H, the

geodesic through x will always stay within the set of points whose

isotropy group is isomorphic to H.

� However, this does not imply that geodesics remain in the
same individual orbit.

� A geodesic starting at x might move to other points y within the

same stratum BpHq such that y is not in the same orbit as x (i.e.,

y R G ¨ x), but y still has an isotropy group isomorphic to H.

� Spray-invariance applies at the level of strata (sets of points with

isomorphic isotropy groups), not necessarily at the finer level of

individual orbits.
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Thank You!
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