Spray-Invariant Sets in Infinite-Dimensional Manifolds

Kaveh Eftekharinasb, Institute of Mathematics of NAS of Ukraine

International Scientific Online Conference "Algebraic and Geometric Methods of Analysis", May 26-29, 2025

The talk is based on the paper: arXiv preprint arXiv:2505.10980

Motivation

- For infinite-dimensional manifolds (Hilbert, Banach, and Fréchet manifolds), we introduce a broader perspective on geodesic preservation than the rigid notion of totally geodesic submanifolds: subsets with the property that any geodesic of a spray starting in the set stays within it for its entire domain.
- Our framework includes singular spaces (e.g., stratified spaces), which are common in infinite dimensions. Such sets arise naturally even in simple settings (e.g., linear spaces equipped with flat sprays).
- Regularity matters! singular sets may show sensitive dependence, for example, on parametrization, whereas for differentiable submanifolds invariance is preserved under reparametrization.

In \mathbb{R}^n , a symmetric bilinear form $\omega : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ can be entirely reconstructed from its associated quadratic form $a(t) = \omega(t, t)$ using the polarization identity:

$$\omega(t_1, t_2) = \frac{1}{2} \left(a(t_1 + t_2) - a(t_1) - a(t_2) \right).$$

Interestingly, this lifts beautifully to differential geometry! Ambrose, Palais, and Singer (1960) showed a similar natural bijection between:

- 1. Symmetric affine connections on a smooth manifold M. (analog of symmetric bilinear forms).
- 2. Sprays on the tangent bundle $\mathrm{T}(\mathrm{T}M).$ (analog of quadratic forms).

In finite-dimensional Finsler theory, Finsler structures are defined by $F : TM \rightarrow [0, \infty)$, which are

- Smooth on $\mathrm{TM}\backslash\{0\}.$
- Positively homogeneous and strongly convex on tangent spaces.

For our infinite-dimensional setting, we must give up the smoothness requirement. This is crucial because smoothness is too restrictive for many infinite-dimensional examples.

Unfortunately, this has a serious drawback: we cannot use standard Finsler geometric methods to obtain an exponential function and, hence, a spray. We do not require the existence of a spray induced by a Finsler (or Riemannian) metric or compatibility with such a structure.

Let $\varphi: U \to F$ be a mapping, where U is open in E, and E, F are locally convex spaces.

• The directional derivative at x in direction h is

$$D\varphi_x(h) := \lim_{t \to 0} \frac{1}{t} (\varphi(x + th) - \varphi(x))$$

- φ is differentiable at x if $D\varphi_x(h)$ exists for all h.
- φ is continuously differentiable (C¹) if it's differentiable on U and the map Dφ: U × E → F, (x, h) → Dφ_x(h) is continuous.
- φ is a C^k -mapping $(k \in \mathbb{N} \cup \{\infty\})$ if it's continuous, all iterated directional derivatives $D^j \varphi_x(h_1, \ldots, h_j)$ exist for $j \leq k$, and all maps $D^j \varphi \colon U \times E^j \to F$ are continuous.

Defining Sprays

A C^r -mapping $V : \mathrm{TM} \to \mathrm{T}(\mathrm{TM})$ $(1 \leq r \leq k-2)$ is a second-order C^r -vector field if $\tau_* \circ V = \mathrm{Id}_{\mathrm{TM}}$. It is called symmetric if, in addition, $\tau_2 \circ V = \mathrm{Id}_{\mathrm{TM}}$, where $\tau_2 : \mathrm{T}(\mathrm{TM}) \to \mathrm{TM}$, $\tau : \mathrm{TM} \to \mathrm{M}$, M a manifold modeled on F.

Spray: A second-order symmetric C^r -vector field **S** : $TM \rightarrow T(TM)$:

1. $\mathbf{S}(\mathbf{s}\mathbf{v}) = (L_{\mathrm{TM}})_*(\mathbf{s}\mathbf{S}(\mathbf{v}))$ for all $\mathbf{s} \in \mathbb{R}$ and $\mathbf{v} \in \mathrm{TM}$.

 $L_{\mathrm{TM}} \colon \mathrm{TM} \to \mathrm{TM}, \quad v \mapsto sv.$

Consider a chart (U, φ) of M. The spray condition means that

 $\begin{aligned} (x, sv, sv, f(x, sv)) &= (L_{\text{TM}})_*(s\mathbf{S}(v))(x, v, sv, sf(x, v)) = (x, sv, sv, s^2f(x, v)) \\ f &: U \times \mathsf{F} \to \mathsf{F}, \quad f(x, sv) = s^2f(x, v) \end{aligned}$

indicating that for each fixed $x \in U$, the function $f(x, \cdot)$ must be *quadratic* in the velocity variables v.

A curve $g: I \subseteq \mathbb{R} \to M$ is a geodesic of a spray **S** if its canonical lifting $g': I \to TM$ is an integral curve of the spray **S**.

This means the "acceleration" of the curve is determined by the spray:

$$g'' = \mathbf{S}(g')$$

Adjacent Cones

• The pseudo-distance of an element $x \in F$ to a subset $S \subset F$ with respect to a seminorm $\|\cdot\|_{F,n}$ is defined by

$$d_{F,n}(x,S) := \inf\{ \|x - y\|_{F,n} \mid y \in S \}.$$

 Let S ⊂ M, s ∈ S. A vector v ∈ T_sM is called a first-order adjacent tangent vector to S at s if there exists a chart (U, φ) around s, s.t.:

$$\forall n \in \mathbb{N}, \quad \lim_{t \to 0^+} t^{-1} \mathrm{d}_{\mathsf{F},n} \Big(\varphi(s) + t \mathrm{D} \varphi(s)(v), \varphi(U \cap S) \Big) = 0.$$

The set of all such v is denoted by $T_s S$.

Let v ∈ T_sS. A vector w ∈ T_v(TM) is called a second-order adjacent tangent vector to S at s (with v as its associated first-order vector) if there exists a chart (U, φ) about s, s.t. D(φ_{*})_v(w) = v, and

$$\forall n \in \mathbb{N}, \quad \lim_{t \to 0^+} t^{-2} \mathrm{d}_{\mathsf{F},n} \Big(\big(\varphi(s) + t v_{\varphi} + \frac{1}{2} t^2 w_{\varphi_{*},2} \big), \varphi(U \cap S) \Big) = 0.$$

 $v_{\varphi} := D\varphi_s(v)$, and $w_{\varphi_*} := D(\varphi_*)_v(w) = (w_{\varphi_*,1}, w_{\varphi_*,2})$. The set of all such w is denoted by $T_s^2 S$.

Let **S** be a spray on M, and $S \subset M$ a non-empty subset. A vector $v \in TM$ is called a (T^2S, S) -admissible vector if

$$\tau(\mathbf{v}) \in S$$
 and $\mathbf{S}(\mathbf{v}) \in \mathrm{T}^2_{\tau(\mathbf{v})}S$.

The set of all such vectors is denoted by $A_{S,S}$ and is called the (T^2S, S) -admissible set for S and S.

Connection to Geodesics: For a geodesic $g: I \subset \mathbb{R} \to M$, and a non-empty closed subset $S \subset M$:

 $g(t) \in S$ if and only if $g'(t) \in A_{S,S}$ for all $t \in I$.

Definition (Spray-Invariant Set)

A subset $S \subset M$ is spray-invariant with respect to **S** if: For any geodesic $g: I \to M$ of **S** such that $0 \in I$, if $g(0) \in S$ and $g'(0) \in A_{S,S}$, then $g(t) \in S$ for all $t \in I$.

Example: Spray-Invariant Singular Space

Consider the Fréchet space $\mathcal{E} = C^{\infty}(\mathbb{R}, \mathbb{R})$ of smooth real-valued functions. We use a flat spray $\mathbf{S}(f, v) = (f, v, v, \mathbf{0}_{\mathcal{E}})$, where geodesics are affine paths:

$$\gamma(t)=f+t\mathbf{v}.$$

Define the singular subset $S = S_+ \cup S_-$, where:

$$\begin{aligned} \mathsf{S}_+ &:= \{ f \in \mathcal{E} \mid \mathsf{supp}(f) \subseteq [0, \infty) \} \\ \mathsf{S}_- &:= \{ f \in \mathcal{E} \mid \mathsf{supp}(f) \subseteq (-\infty, 0] \} \end{aligned}$$

Although S_+ and S_- are smooth submanifolds, their union S is singular at the zero function (not locally homeomorphic to a linear subspace near 0).

The admissible set $A_{S,S}$ is given by

$$A_{\mathbf{S},\mathbf{S}} = \bigcup_{f \in \mathbf{S}} \left\{ (f, v) \in \mathrm{T}\mathcal{E} \mid v \in \mathrm{T}_f \mathbf{S}_+ \text{ or } v \in \mathrm{T}_f \mathbf{S}_- \right\}.$$

For any geodesic $\gamma(t) = f + tv$ with $(f, v) \in A_{S,S}$, we find that $\gamma(t) \in S$ for all $t \in \mathbb{R}$. Therefore, S is spray-invariant with respect to **S**.

Two sprays **S** and \overline{S} on M are projectively equivalent if their geodesics share the same paths, differing only by an orientation-preserving reparametrization.

Formally: Any geodesic \overline{g} of \overline{S} can be reparametrized to be a geodesic of **S**, and vice versa.

Key Observation for Singular Sets: The admissible sets $A_{S,S}$ and $A_{\overline{S},S}$ for projectively equivalent sprays **S** and \overline{S} generally differ when *S* is singular.

Example: Constructing a Projectively Equivalent Spray

Recall the singular set $S=S_+\cup S_-$ from the previous example in $\mathcal{E}=\textit{C}^\infty(\mathbb{R},\mathbb{R}).$

- Let $\chi(x)$ be a standard smooth bump function supported in [-1,1].
- For any $\varepsilon > 0$, define $\chi_{\varepsilon}(x) = \chi(2x/\varepsilon)$, supported in $[-\varepsilon/2, \varepsilon/2]$.
- Define the scalar function $\alpha(f, \mathbf{v}) \colon \mathrm{T}\mathcal{E} \to \mathbb{R}$ by:

$$\alpha(f, \mathbf{v}) := \int_{\mathbb{R}} \chi_{\varepsilon}(\mathbf{x}) \mathbf{v}(\mathbf{x}) \, d\mathbf{x}.$$

- For a tangent vector $v(x) = \chi_{\delta}(x)$ with $0 < \delta \leq \varepsilon/2$, we have $\alpha(f, v) > 0$.
- Now, define a new spray \tilde{S} as: $\tilde{S}(f, v) := (f, v, v, -2\alpha(f, v) \cdot v)$.
- This spray $\tilde{\mathbf{S}}$ is projectively equivalent to the flat spray $\mathbf{S}(f, v) = (f, v, v, \mathbf{0}_{\mathcal{E}})$ used in the previous example.
 - This yields a projectively equivalent spray since it modifies the second derivative by a multiple of the adjacent tangent vector.

S is not spray-invariant under \tilde{S} .

Theorem (Characterization of Totally Geodesic Submanifolds)

Let **S** be a spray on a manifold M, and let S be a C^3 -submanifold of M. Then S is totally geodesic if and only if $A_{S,S} = TS$.

Corollary

Let M be a manifold such that, given any two distinct points in M, there is a unique geodesic passing through them. Let $S \subset M$ be a closed C^3 -submanifold with the property that, locally, given any two distinct points in S, the unique geodesic segment in M connecting them lies entirely in S. Then S is a totally geodesic submanifold of M.

Example: Spray-Invariant but Not Totally Geodesic

Let $\mathcal{M} = C^{\infty}(\mathbb{R}, \mathbb{R}^2)$ be the Fréchet space of smooth \mathbb{R}^2 -valued functions. Equipped with the flat spray $\mathbf{S}(f, v) = (f, v, v, (0, 0))$, where (0, 0) is the zero function in \mathcal{M} . Consider the subset $S \subseteq \mathcal{M}$ defined by

$$S := \{ f \in \mathcal{M} \mid f = (h, h^2) \text{ for some } h \in E = C^{\infty}(\mathbb{R}, \mathbb{R}) \}.$$

The admissible set $A_{S,S}$ for this spray and subset is

$$A_{\mathbf{S},S} = \{(f,0) \in \mathrm{T}\mathcal{M} \mid f = (h,h^2), \ h \in E\}.$$

The tangent bundle TS is

$$TS = \{(f, v) \in T\mathcal{M} \mid f = (h, h^2), v = (u, 2hu)\} \text{ for some } u \in E\}.$$

S is spray-invariant. However, as $TS \neq A_{S,S}$, this means S is NOT totally geodesic.

Let $\mathcal{M} = C^{\infty}(\mathbb{R}^n, \mathbb{R})$ be the Fréchet space of smooth real-valued functions on \mathbb{R}^n . We use the flat spray $\mathbf{S}(f, v) = (f, v, v, \mathbf{0}_{\mathcal{M}})$, where geodesics are affine paths:

$$\gamma(t)=f+tv.$$

Define the subset $S \subset M$ as the set of constant functions on \mathbb{R}^n :

$$S := \{ f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}) \mid \exists c \in \mathbb{R} \text{ such that } f(x) = c, \forall x \in \mathbb{R}^n \}.$$

The set S can be identified with \mathbb{R} . It's a closed linear subspace of \mathcal{M} , making it a closed C^{∞} -submanifold.

Since all conditions of the corollary are satisfied (unique geodesics, and locally, geodesics between points in S stay in S), S is a totally geodesic submanifold.

A C^k -automorphism ϕ of M is an automorphism of the spray **S** if

$$\phi_{**} \circ \mathbf{S} \circ \phi_*^{-1} = \mathbf{S}.$$

These automorphisms form a group under composition, denoted by ${\rm Aut}(M, {\bm S}).$ They preserve the spray's structure.

Theorem (Automorphisms Preserve Spray-Invariance)

Let $S \subset M$ be a non-empty closed subset that is spray-invariant with respect to **S**, and let $\phi \in Aut(M, S)$. Then $\phi(S)$ is also spray-invariant with respect to **S**.

Recall the singular spray-invariant set $S=S_+\cup S_-$ from previous examples in the Fréchet space $\mathcal{E}=C^\infty(\mathbb{R},\mathbb{R})$, with the flat spray $\boldsymbol{S}.$

• For a fixed $a \in \mathbb{R}$, $a \neq 0$, consider the translation map:

$$\phi_a \colon \mathcal{E} \to \mathcal{E}, \quad \phi_a(f)(x) = f(x-a).$$

- This translation map ϕ_a is an automorphism of the flat spray **S**.
 - Geodesics of the flat spray are affine paths: $\gamma(t) = f + tv$.
 - Applying ϕ_a to a geodesic just translates the function along the x-axis: $\phi_a(\gamma(t))(x) = \gamma(t)(x-a) = f(x-a) + tv(x-a).$
 - This transformed curve is still an affine path in $\mathcal E$ and thus a geodesic of the flat spray.
- Since S is spray-invariant and $\phi_a \in Aut(\mathcal{E}, \mathbf{S})$, by the theorem:
 - The translated set $\phi_a(S)$ is also spray-invariant.

Invariance of $A_{S,S}$

Key Question: If *S* is spray-invariant, does the spray **S** (regarded as a first-order vector field on TM) remain second-order adjacent tangent to its own admissible set $A_{S,S}$?

Why this matters: This reformulation reduces the problem from analyzing second-order dynamics on M to studying first-order dynamics on TM, which can be more tractable.

Potential Tool: The Nagumo-Brezis Theorem provides a criterion for determining the invariance of sets under the flow of a vector field.

- The theorem's classical formulation applies primarily to Banach manifolds.
- It does not generalize straightforwardly to arbitrary Fréchet manifolds, posing a significant hurdle for our infinite-dimensional setting. This theorem holds true for the category of MC^k-Fréchet manifolds under nuclearity assumptions.

Bounded Differentiability: Foundations

To define MC^k -differentiability (defined by Olaf Müller, 2006) in Fréchet spaces E and F:

• We equip E and F with a specific translation-invariant metric:

$$\operatorname{m}_{\mathsf{F}}(x, y) = \sup_{n \in \mathbb{N}} \frac{1}{2^n} \frac{\|x - y\|_{F, n}}{1 + \|x - y\|_{F, n}}$$

- We consider the space L(E, F) of linear mappings L: E → F that are (globally) Lipschitz continuous with respect to these metrics.
 - The Lipschitz constant of a linear map L is

$$\operatorname{Lip}(L) \mathrel{\mathop:}= \sup_{x \in E \setminus \{\boldsymbol{0}_E\}} \frac{\operatorname{m}_F(L(x), \boldsymbol{0}_F)}{\operatorname{m}_E(x, \boldsymbol{0}_E)} < \infty.$$

• We equip L(E,F) with its own translation-invariant metric:

$$(L, H) \mapsto \operatorname{Lip}(L - H).$$

Bounded Differentiability: Definition

- Let φ: U ⊆ E → F be a C¹-mapping (in the sense of Michal-Bastiani).
- φ is called bounded differentiable (or MC¹-differentiable) if
 - 1. The directional derivative $D\varphi(x)$ (which is a linear map from E to F) belongs to the space of Lipschitz linear maps L(E, F) for all $x \in U$.
 - The induced mapping Dφ: U → L(E, F), which sends x → Dφ(x), is continuous with respect to the defined metrics on U and L(E, F).

In essence:

- This differentiability requires not just existence of directional derivatives, but also that these derivatives are *Lipschitz continuous* linear maps, and that the derivative mapping itself is continuous in a specific metric.
- This is a stronger form of differentiability.

Let $(B_1, |\cdot|_1)$ and $(B_2, |\cdot|_2)$ be Banach spaces. A linear operator $T: B_1 \rightarrow B_2$ is called nuclear if it can be written in the form:

$$T(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, x_j \rangle y_j$$

- $\langle \cdot, \cdot \rangle$ is the duality pairing between B_1 and its dual B'_1 .
- $x_j \in B'_1$ with $|x_j|'_1 \leq 1$.
- $y_j \in B_2$ with $|y_j|_2 \leq 1$.
- λ_j are complex numbers such that $\sum_i |\lambda_j| < \infty$.

A nuclear space is a locally convex topological vector space such that every continuous linear map to a Banach space is nuclear.

Flow-Invariance & The Nagumo-Brezis Theorem

- Let $A \subset M$ and V be an MC^1 -vector field on M.
- The set A is called flow-invariant with respect to V if:
 - For any integral curve *I*(*t*) of V, if *I*(0) ∈ *A*, then *I*(*t*) ∈ *A* for all *t* ≥ 0 within the curve's domain.

Theorem (Nagumo-Brezis Theorem, K.E., 2024)

Let M be a nuclear MC^k -Fréchet manifold, and let $V: M \to TM$ be an MC^1 -vector field. Let $A \subset M$ be closed. Then, A is flow-invariant with respect to V if and only if for each $x \in M$, there exists a chart (U, ϕ) around x, such that:

$$\lim_{t\to 0^+} t^{-1} \mathbf{m}_{\mathsf{F}} \left(\phi(x) + t \mathbf{D} \phi(x) (\mathbf{V}(x)), \phi(U \cap A) \right) = 0.$$

This condition essentially means V(x) is an adjacent tangent vector to $\phi(U \cap A)$ at $\phi(x)$.

Linking Spray-Invariance to Adjacent Tangency

Recall: The question was: If S is spray-invariant, does **S** (as a vector field on TM) remain second-order adjacent tangent to $A_{S,S}$?

Theorem

Let M be a nuclear MC^k -Fréchet manifold, and let $S \subset M$ be a subset such that $A_{S,S}$ is non-empty and closed. Then, the following are equivalent:

- 1. S is spray-invariant with respect to S.
- 2. **S** is adjacent tangent to $A_{S,S}$ when regarded as a vector field on TM.

Theorem

Let B be a C^k -Banach manifold, $k \ge 4$, and $S \subset B$ a subset such that $A_{S,S}$ is non-empty and closed. Then, S is spray-invariant if and only if **S** is adjacent tangent to $A_{S,S}$ when regarded as a vector field on TB.

Example: Spray-Invariant Set of Non-Negative Functions

Consider the Banach manifold $\mathcal{M} = C^k(S^1, \mathbb{R})$ of *k*-times differentiable functions on the circle S^1 . We equip it with the flat spray **S**, whose geodesics are affine paths:

$$\gamma(t) = f + tv, \quad f \in \mathcal{M}, \ v \in T_f \mathcal{M}.$$

Let $S \subset \mathcal{M}$ be the closed subset of non-negative functions:

$$S := \left\{ f \in \mathcal{M} \mid f(\theta) \ge 0, \ \forall \theta \in S^1 \right\}.$$

When viewed as a vector field on T \mathcal{M} , the spray **S** satisfies $\mathbf{S}(v) = 0$ for all $v \in A_{\mathbf{S},S}$.

• Since the zero vector lies in every adjacent cone, this means **S** is adjacent tangent to A_{S,S}.

As **S** is adjacent tangent to $A_{S,S}$ (and $A_{S,S}$ is closed), this implies that *S* is spray-invariant. The set *S* is also a convex cone with vertex at the zero function.

Theorem

Let M be a nuclear MC^k -Fréchet manifold. Let S be a closed MC^3 -submanifold of M (as introduced in previous examples).

If the spray **S** restricted to TS is transverse to T(TS), i.e.,

then S is spray-invariant with respect to S if and only if

 $\forall v \in \mathbf{S}(\mathrm{T}(\mathrm{T}S)), \quad \mathrm{D}\mathbf{S}(v)(\mathbf{S}(v)) \in \mathrm{T}_{\mathbf{S}(v)}(\mathrm{T}(\mathrm{T}S)). \tag{1}$

- Assume B is a Banach manifold of class C^k (k ≥ 4), and S is a spray on B of class C².
- The geodesic flow is the mapping:

 $\Phi_t \colon \mathrm{TB} \to \mathrm{TB}$

that satisfies $\Phi_t(v) = g'_v(t)$, where $g_v : I \to B$ is the unique geodesic with initial tangent $v \in TB$.

Theorem

A closed subset $S \subset B$ is spray-invariant if and only if its admissible set $A_{S,S}$ is invariant under the geodesic flow Φ_t .

Example: Constant Maps to a Great Circle

Consider the Hilbert manifold $\mathcal{M} = L^2(S^1, S^2)$, the space of square-integrable maps from the circle S^1 into the 2-sphere S^2 . The tangent space at $f \in \mathcal{M}$ is:

$$\mathrm{T}_{f}\mathcal{M}\cong L^{2}(S^{1},\mathrm{T}_{f(\theta)}S^{2}).$$

 ${\cal M}$ carries the natural $L^2\mbox{-Riemannian}$ metric:

$$\langle v, w \rangle_f = \int_{S^1} \langle v(\theta), w(\theta) \rangle_{g_{S^2}(f(\theta))} d\theta.$$

Let **S** be the canonical spray associated with this metric.

Let $C \subset S^2$ be a great circle (a totally geodesic submanifold of S^2). Define the closed subset $S := \{f \in \mathcal{M} \mid \exists p \in C \text{ such that } f(\theta) = p \text{ for almost all } \theta \in S^1 \}$. Its admissible set $A_{S,S}$ is invariant under the geodesic flow Φ_t . Therefore, by the Theorem, S is spray-invariant. However, S is NOT totally geodesic.

Example: Space of Finite Sequences (ℓ^2) - Setup

Let $H = \ell^2$, the separable Hilbert space of square-summable real sequences, with the standard inner product:

$$\langle x,y\rangle = \sum_{i=1}^{\infty} x_i y_i.$$

Let $\{e_n\}_{n\in\mathbb{N}}$ be its standard orthonormal basis. Define the subset $S := \{x \in H \mid \text{only finitely many coordinates of } x \text{ are nonzero}\}.$

- This is the space of finite sequences.
- It can be expressed as a countable union of finite-dimensional linear subspaces:

$$\mathcal{S} = \bigcup_{k=1}^{\infty} H_k, \quad ext{where } H_k \coloneqq ext{span}(e_1, \dots, e_k).$$

Consider the flat spray of ℓ^2 . Let $x \in S$ and $v \in T_xS$. Then there exists a k such that both $x, v \in H_k$. The geodesic starting at x with tangent v is given by $\gamma(t) = x + tv$. Since H_k is a linear subspace, $\gamma(t) \in H_k \subset S$ for all $t \in \mathbb{R}$. S is spray-invariant.

Example: Stratification

• We consider a stratification of S into strata S_i :

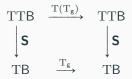
$$S_i = H_i \setminus H_{i-1},$$

- We now verify the frontier axiom for this stratification, where the closure is taken with respect to the topology induced from ℓ^2 .
- The closure of a stratum S_i in S is simply $\overline{S_i} = H_i$.
 - Case 1: i < j
 S_i = *H_i*. Since *H_i* ⊂ *H_j*, but *H_i* contains vectors with at most i nonzero components, while *S_j* contains vectors with exactly *j* > *i* nonzero components, it follows that *H_i* ∩ *S_j* = Ø. Thus, *S_i* ∩ *S_j* = Ø.
 - Case 2: i = jTrivially, $\overline{S_i} = H_i$, and $\overline{S_i} \cap S_i = S_i \neq \emptyset$. Furthermore, $S_i \subset \overline{S_i}$ by definition.
 - Case 3: *i* > *j*

We have $H_j \subset H_i$, and $S_j = H_j \setminus H_{j-1} \subset H_i$. Hence, $\overline{S_i} \cap S_j = S_j \neq \emptyset$, and $S_j \subset \overline{S_i}$.

G-Invariant Sprays

Let *G* be a smooth Lie group acting smoothly on a smooth Banach manifold B. A spray **S** on B is called *G*-invariant if, for every $g \in G$, the action of *g* on B lifts to a smooth transformation $T_g: TB \rightarrow TB$ such that **S** is preserved under this lifted action. More precisely, for all $g \in G$, the following diagram commutes:



his condition means that for any $\nu \in \mathrm{TB},$ we have

$$T(T_g)(S(\nu)) = S(T_g(\nu)).$$

For a point $x \in B$, the isotropy group (or stabilizer) of x, denoted by G_x , is the subgroup of G consisting of all elements $g \in G$ that leave x unchanged under the group action:

$$G_x = \{g \in G \mid g \cdot x = x\}.$$

A slice at $x \in B$ is a submanifold $V \subset B$ containing x such that

- 1. *H*-Invariance: $h \cdot v \in V$ for all $h \in H$ and $v \in V$, where $H = G_x$.
- 2. Local Triviality: There exists a G-equivariant diffeomorphism

$$\Phi\colon G\times_H V\to U$$

onto a *G*-equivariant open neighborhood $U \subset B$ of the orbit $G \cdot x$, such that $\Phi([g, v]) = g \cdot v$ and $\Phi([e, x]) = x$, where *e* is the identity in *G*.

3. Transversality:

- 3.1 $T_x V \cap T_x(G \cdot x) = \{0\}.$
- 3.2 $T_x V$ is a closed subspace of $T_x B$ such that $T_x B = T_x (G \cdot x) \oplus T_x V$.
- 3.3 The map $\alpha \colon G \times V \to B$, given by $\alpha(g, v) = g \cdot v$, has a derivative at (e, x),

$$T_{(e,x)}\alpha: T_eG \times T_xV \to T_xB,$$

which is surjective, with kernel complemented in $T_e G \times T_x V$.

Theorem

Let G be a finite-dimensional smooth Lie group acting smoothly on a smooth Banach manifold B. Assume that a smooth spray **S** on B is G-invariant. And assume that for every $x \in B$, there exists a G-equivariant neighborhood U of x and a G-equivariant diffeomorphism

 $\Phi\colon G\times_H V\to U$

where V is a slice at x and $H = G_x$ is the isotropy subgroup. Then the orbit type decomposition of B, given by

$$\mathsf{B} = \bigcup_{[H]} \mathsf{B}_{(H)}, \quad \text{where } \mathsf{B}_{(H)} = \{ x \in \mathsf{B} \colon G_x \cong H \},$$

defines a stratification of B such that each stratum $B_{(H)}$ is spray-invariant.

An important distinction arises from Theorem 10:

- The theorem guarantees that geodesics starting in an orbit type stratum B_(H) remain in that stratum.
 - This means if you start at a point x with isotropy group H, the geodesic through x will always stay within the set of points whose isotropy group is isomorphic to H.
- However, this does not imply that geodesics remain in the same individual orbit.
 - A geodesic starting at x might move to other points y within the same stratum B_(H) such that y is not in the same orbit as x (i.e., y ∉ G ⋅ x), but y still has an isotropy group isomorphic to H.
- Spray-invariance applies at the level of strata (sets of points with isomorphic isotropy groups), not necessarily at the finer level of individual orbits.

Thank You!