Constant mean curvature surfaces with harmonic Gauss maps in three-dimensional Lie groups (Based on a joint work with Iryna Savchuk)

Eugene Petrov

V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Algebraic and geometric methods of analysis May 27, 2025, Ukraine

CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025 1 / 17

Let M be an (immersed smooth) hypersurface in an (n + 1)-dimensional Lie group G with a left-invariant Riemannian metric. Consider a natural generalization of the Gauss map of a hypersurface in \mathbb{E}^{n+1} :

Definition

The *left-invariant Gauss map* $\Phi \colon M \to \mathbb{R}P^n$ of M is defined by

$$\Phi(p)=d_pL_{p^{-1}}(N_pM),$$

where $N_p M$ is the normal space of N at p, $L_{p^{-1}}$ is the left translation in G.

Let M be an (immersed smooth) hypersurface in an (n + 1)-dimensional Lie group G with a left-invariant Riemannian metric. Consider a natural generalization of the Gauss map of a hypersurface in \mathbb{E}^{n+1} :

Definition

The *left-invariant Gauss map* $\Phi \colon M \to \mathbb{R}P^n$ of M is defined by

$$\Phi(p)=d_pL_{p^{-1}}(N_pM),$$

where $N_p M$ is the normal space of N at p, $L_{p^{-1}}$ is the left translation in G.

Definition

The left-invariant Gauss map $\Phi: M \to \mathbb{S}^n$ of an oriented M is defined by

$$\Phi(p) = d_p L_{p^{-1}}(\eta_p),$$

where η is the unit normal vector field of M.

Here elements of $\mathbb{R}P^n$ and \mathbb{S}^n are identified with 1-dimensional subspaces and unit vectors respectively in the Lie algebra \mathfrak{g} of \mathcal{G} , \mathfrak{g}

Eugene Petrov

CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups

27.05.2025 2 / 17

Let (M, g) and (N, h) be Riemannian manifolds, M be compact.

Definition

A map $\Phi: M \to N$ is called *harmonic* if it is a stationary point of the *energy functional*

$$\Phi\mapsto E(\Phi)=\int\limits_M e(\Phi)dV_g,$$

where $e(\Phi) = \frac{1}{2} \operatorname{Tr}_g(\Phi^* h)$ is the energy density function.

Let (M, g) and (N, h) be Riemannian manifolds, M be compact.

Definition

A map $\Phi: M \to N$ is called *harmonic* if it is a stationary point of the *energy functional*

$$\Phi\mapsto E(\Phi)=\int\limits_M e(\Phi)dV_g,$$

where $e(\Phi) = \frac{1}{2} \operatorname{Tr}_g(\Phi^* h)$ is the energy density function.

The corresponding Euler-Lagrange equation has the form

$$\tau(\Phi) = \operatorname{Tr}_{g} B_{\Phi} = 0,$$

where $B_{\Phi} \in \Gamma(TM^* \otimes TM^* \otimes \Phi^{-1}TN)$ is the second fundamental form of Φ , defined in the obvious notation by

$$B_{\Phi}(X,Y) = (\nabla_h)_X d\Phi(Y) - d\Phi((\nabla_g)_X Y).$$

The field $\tau(\Phi) = \operatorname{Tr}_g B_{\Phi} \in \Gamma(\Phi^{-1}TN)$ is called the *tension field* of Φ . Using it we can extend the definition to the case of non-compact M:

Definition

A map $\Phi: M \to N$ is called harmonic if $\tau(\Phi) = 0$.

The field $\tau(\Phi) = \operatorname{Tr}_g B_{\Phi} \in \Gamma(\Phi^{-1}TN)$ is called the *tension field* of Φ . Using it we can extend the definition to the case of non-compact M:

Definition

A map $\Phi: M \to N$ is called harmonic if $\tau(\Phi) = 0$.

In particular,

Proposition

- $\Phi \colon M \to \mathbb{E}^n$ is harmonic if and only if $\Delta_g \Phi^a = 0$ for all a.
- (T. Takahashi, 1966) $\Phi: M \to \mathbb{S}^n \hookrightarrow \mathbb{E}^{n+1}$ is harmonic if and only if $\Delta_g \Phi^a = -2e(\Phi)\Phi^a$ for all *a*.

Here Δ_g is the Riemannian Laplacian of (M, g).

A B A A B A

Let's endow $\mathbb{R}P^n$ (or \mathbb{S}^3) with its standard Riemannian metric of constant curvature.

Theorem (E.A. Ruh, J. Vilms, 1970)

The Gauss map Φ of a connected hypersurface M in \mathbb{E}^{n+1} is harmonic if and only M is of constant mean curvature (CMC).

Let's endow $\mathbb{R}P^n$ (or \mathbb{S}^3) with its standard Riemannian metric of constant curvature.

Theorem (E.A. Ruh, J. Vilms, 1970)

The Gauss map Φ of a connected hypersurface M in \mathbb{E}^{n+1} is harmonic if and only M is of constant mean curvature (CMC).

Theorem (N. do Espírito-Santo, S. Fornari, K. Frensel, J. Ripoll, 2011)

The (left-invariant) Gauss map Φ of a connected hypersurface M in a Lie group G with a biinvariant metric is harmonic if and only M is CMC.

In particular, it is true for groups \mathbb{E}^{n+1} , SO(3) (and its universal covering $\mathbb{S}^3 \cong SU(2)$) with metrics of constant curvature. In fact, the Ruh – Vilms theorem is true for submanifolds of an arbitrary

codimension with $\nabla H = 0$, but its higher-codimension generalizations to the Lie groups do not take place even for biinvariant metrics and totally geodesic submanifolds.

27.05.2025 5 / 17

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The next example shows that the generalization of Ruh – Vilms theorem is not true for general left-invariant metrics and left-invariant Gauss maps (in the following, we will consider such maps by default).

The next example shows that the generalization of Ruh – Vilms theorem is not true for general left-invariant metrics and left-invariant Gauss maps (in the following, we will consider such maps by default).

The (2m + 1)-dimensional *Heisenberg Lie group* Nil^{2m+1} can be identified with \mathbb{R}^{2m+1} in such a way that left-invariant fields

$$X_{i} = \frac{\partial}{\partial x^{i}} - \frac{y^{i}}{2} \frac{\partial}{\partial z}, i = \overline{1, m}, Y_{i} = \frac{\partial}{\partial y^{i}} + \frac{x^{i}}{2} \frac{\partial}{\partial z}, i = \overline{1, m}, Z = \frac{\partial}{\partial z}.$$

form a basis of its Lie algebra with non-zero brackets $[X_i, Y_i] = Z$, $i = \overline{1, m}$. Consider the left-invariant metric on $\operatorname{Nil}^{2m+1}$ such that this frame is orthonormal.

The next example shows that the generalization of Ruh – Vilms theorem is not true for general left-invariant metrics and left-invariant Gauss maps (in the following, we will consider such maps by default).

The (2m + 1)-dimensional *Heisenberg Lie group* Nil^{2m+1} can be identified with \mathbb{R}^{2m+1} in such a way that left-invariant fields

$$X_{i} = \frac{\partial}{\partial x^{i}} - \frac{y^{i}}{2} \frac{\partial}{\partial z}, \ i = \overline{1, m}, \ Y_{i} = \frac{\partial}{\partial y^{i}} + \frac{x^{i}}{2} \frac{\partial}{\partial z}, \ i = \overline{1, m}, \ Z = \frac{\partial}{\partial z}.$$

form a basis of its Lie algebra with non-zero brackets $[X_i, Y_i] = Z$, $i = \overline{1, m}$. Consider the left-invariant metric on $\operatorname{Nil}^{2m+1}$ such that this frame is orthonormal.

Theorem (E. P., 2011)

If M is a CMC hypersurface in $\operatorname{Nil}^{2m+1}$ with the harmonic Gauss map Φ then M is *vertical*, i.e., the field Z is tangent to it. If it is complete then $M = M_1 \times \mathbb{R}$ is a cylinder over a CMC hypersurface M_1 in \mathbb{E}^{2n} .

In particular, for m = 1 complete connected CMC surfaces in Nil³ with harmonic Gauss maps are vertical Euclidean planes and vertical Euclidean round cylinders.

Eugene Petrov

27.05.2025 6 / 17

To prove the previous theorem we obtained a general criterion of harmonicity for Φ . For surfaces it takes the following form:

Proposition

Let M be a surface in an 3-dimensional Lie group G with a left-invariant Riemannian metric $\langle \cdot, \cdot \rangle$, its Riemannian connection ∇ and its Ricci tensor Ric. Let $\{Y_1, Y_2\}$ be an orthonormal frame of T_pM at some $p \in M$, $\{b_{ij}\}$ be the coefficients of the second fundamental form of M at p with respect to this basis, H be its mean curvature, and Y_3 be a unit normal vector to M at p. Denote by $\{Y_1, Y_2, Y_3\}$ also the continuations of these vectors by left-invariant fields on G. Then the Gauss map Φ of M is harmonic at p(i.e., its tension field vanishes at p) if and only if for j = 1, 2

$$\operatorname{Ric}(Y_3, Y_j) + \sum_{1 \leq i \leq 2} \left\langle \nabla_{\nabla_{Y_i} Y_i} Y_3 + \nabla_{Y_i} \nabla_{Y_i} Y_3, Y_j \right\rangle -$$

$$-Y_j(2H)-2H\langle \nabla_{Y_3}Y_3,Y_j\rangle+2\sum_{1\leqslant i,k\leqslant n}b_{ik}\langle \nabla_{Y_i}Y_k,Y_j\rangle=0.$$

(B)

Let us use a well-known description by J. Milnor (1976) of left invariant metrics on a three-dimensional connected Lie group G. If G is unimodular, i.e., $\operatorname{Tr} \operatorname{ad}_x = 0$ for each $x \in \mathfrak{g}$, then there exists an orthonormal frame $\{e_1, e_2, e_3\}$ of \mathfrak{g} such that

$$[e_2, e_3] = \lambda_1 e_1, \ [e_3, e_1] = \lambda_2 e_2, \ [e_1, e_2] = \lambda_3 e_3$$

for some $\{\lambda_i\} \subset \mathbb{R}$. Then the formulae from the previous proposition can be rewritten in the terms of these coefficients.

Let us use a well-known description by J. Milnor (1976) of left invariant metrics on a three-dimensional connected Lie group G. If G is unimodular, i.e., $\operatorname{Tr} \operatorname{ad}_x = 0$ for each $x \in \mathfrak{g}$, then there exists an orthonormal frame $\{e_1, e_2, e_3\}$ of \mathfrak{g} such that

$$[e_2, e_3] = \lambda_1 e_1, \ [e_3, e_1] = \lambda_2 e_2, \ [e_1, e_2] = \lambda_3 e_3$$

for some $\{\lambda_i\} \subset \mathbb{R}$. Then the formulae from the previous proposition can be rewritten in the terms of these coefficients.

The equality $\lambda_1 = \lambda_2 = \lambda_3$ means that $ad_x = [x, \cdot]$ is skew-adjoint for each $x \in \mathfrak{g}$, i.e., the metric is biinvariant. These are constant curvature metrics on \mathbb{E}^3 (for $\lambda_i = 0$), SO(3) and its universal covering $\mathbb{S}^3 \cong SU(2)$ (for $\lambda_i \neq 0$). For this case the harmonicity criterion takes the form

$$Y_1(2H) = Y_2(2H) = 0,$$

so indeed Φ is harmonic if and only if *M* is CMC.

Let only two of $\{\lambda_i\}$ be equal, say (without loss of generality) $\lambda_1 = \lambda_1 = \lambda \neq \mu = \lambda_3$. This means that ad_x is skew-adjoint only for x proportional to e_3 , so the metric is right invariant with respect to a one-dimensional subgroup $H = \exp(\mathbb{R}e_3)$, but not biinvariant.

025 9/17

Let only two of $\{\lambda_i\}$ be equal, say (without loss of generality) $\lambda_1 = \lambda_1 = \lambda \neq \mu = \lambda_3$. This means that ad_x is skew-adjoint only for x proportional to e_3 , so the metric is right invariant with respect to a one-dimensional subgroup $H = \exp(\mathbb{R}e_3)$, but not biinvariant. In this case Φ is harmonic if and only if

$$Y_1(2H) + (\lambda - \mu) \sin 2\alpha (H + b_{22}) = 0,$$

 $Y_2(2H) - \frac{1}{2}(\lambda - \mu) \sin 2\alpha ((\lambda - \mu) \sin^2 \alpha + 2b_{12}) = 0,$

where α is the angle between Y_3 and e_3 .

Theorem

Let a left invariant metric on a connected three-dimensional unimodular Lie group G be right invariant with respect to a one-dimensional subgroup $H \subset G$, but not biinvariant, and let M be a connected surface in G. Then from any two of the following claims the third follows:

- *M* is CMC;
- **2** the Gauss map Φ of M is harmonic;
- M is either everywhere orthogonal to the one-dimensional foliation generated by H (is *horizontal*) or is composed of leaves of this foliation (is *vertical*).

Indeed, if the claim 3 holds then $\sin 2\alpha = 0$, so claims 1 and 2 are equivalent. If for a CMC surface M with harmonic Φ we assume that the claim 3 is not true, we can express $\{b_{ij}\}$ from the equalities above, and then the Codazzi equations lead to a contradiction.

In particular, $\lambda = 0$, $\mu \neq 0$ corresponds to the 3-dimensional Heisenberg group Nil³. As the orthogonal distribution to e_3 is non-integrable, there are only vertical CMC surfaces with harmonic Φ , so a previous theorem for the 3-dimensional case follows.

In particular, $\lambda = 0$, $\mu \neq 0$ corresponds to the 3-dimensional Heisenberg group Nil³. As the orthogonal distribution to e_3 is non-integrable, there are only vertical CMC surfaces with harmonic Φ , so a previous theorem for the 3-dimensional case follows.

For $\lambda \neq 0$, $\mu = 0$ we have the group E(2) of orientation-preserving Euclidean plane isometries. It is solvable, so its universal cover $\widetilde{E(2)}$ can be identified with \mathbb{R}^3 , and the metric is Euclidean. The integral trajectories of e_3 are vertical straight lines. In particular, $\lambda = 0$, $\mu \neq 0$ corresponds to the 3-dimensional Heisenberg group Nil³. As the orthogonal distribution to e_3 is non-integrable, there are only vertical CMC surfaces with harmonic Φ , so a previous theorem for the 3-dimensional case follows.

For $\lambda \neq 0$, $\mu = 0$ we have the group E(2) of orientation-preserving Euclidean plane isometries. It is solvable, so its universal cover $\widetilde{E(2)}$ can be identified with \mathbb{R}^3 , and the metric is Euclidean. The integral trajectories of e_3 are vertical straight lines.

Corollary

Any connected complete CMC surface in E(2) with the harmonic Gauss map is a vertical Euclidean round cylinder or a vertical or horizontal Euclidean plane.

Non-zero λ and μ of different signs correspond to the group $SL(2, \mathbb{R})$. In particular, for $\lambda = 1$, $\mu = -1$ we have the standard metric (a Thurston geometry) on $SL(2, \mathbb{R})$ and its universal covering $\widetilde{SL(2, \mathbb{R})}$. The latter is also the universal covering of $T_1\mathbb{H}^2$ with the Sasaki metric, i.e., the half-space $\{(x, y, z) \in \mathbb{R}^3 \mid y > 0\}$, and

$$e_{1} = y \cos z \frac{\partial}{\partial x} + y \sin z \frac{\partial}{\partial y} - \cos z \frac{\partial}{\partial z},$$
$$e_{2} = -y \sin z \frac{\partial}{\partial x} + y \cos z \frac{\partial}{\partial y} + \sin z \frac{\partial}{\partial z}, e_{3} = \frac{\partial}{\partial z},$$

so the integral trajectories of e_3 are vertical straight lines. Their orthogonal distribution is again non-integrable.

Non-zero λ and μ of different signs correspond to the group $SL(2, \mathbb{R})$. In particular, for $\lambda = 1$, $\mu = -1$ we have the standard metric (a Thurston geometry) on $SL(2, \mathbb{R})$ and its universal covering $\widetilde{SL(2, \mathbb{R})}$. The latter is also the universal covering of $T_1\mathbb{H}^2$ with the Sasaki metric, i.e., the half-space $\{(x, y, z) \in \mathbb{R}^3 \mid y > 0\}$, and

$$e_1 = y \cos z \frac{\partial}{\partial x} + y \sin z \frac{\partial}{\partial y} - \cos z \frac{\partial}{\partial z},$$

$$e_2 = -y \sin z \frac{\partial}{\partial x} + y \cos z \frac{\partial}{\partial y} + \sin z \frac{\partial}{\partial z}, \ e_3 = \frac{\partial}{\partial z},$$

so the integral trajectories of e_3 are vertical straight lines. Their orthogonal distribution is again non-integrable.

Corollary

Any connected complete CMC surface in $SL(2, \mathbb{R})$ with the harmonic Gauss map is a vertical Euclidean round cylinder or a vertical Euclidean plane.

Eugene Petrov

CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025

Finally, non-zero pairs $\lambda \neq \mu$ of the same sign give non-constant curvature left-invariant metrics on \mathbb{S}^3 .

Eugene Petrov

Finally, non-zero pairs $\lambda \neq \mu$ of the same sign give non-constant curvature left-invariant metrics on \mathbb{S}^3 .

The case of pairwise different $\{\lambda_i\}$ is considerably harder. For example, $\lambda_1 = -\lambda_2 = 1$, $\lambda_3 = 0$ gives the standard metric (again a Thurston geometry) on the solvable group Sol^3 . If we identify it with \mathbb{R}^3 then the frame takes the form

$$e_{1} = \frac{1}{\sqrt{2}} \left(e^{-z} \frac{\partial}{\partial x} + e^{z} \frac{\partial}{\partial y} \right), \ e_{2} = \frac{1}{\sqrt{2}} \left(e^{-z} \frac{\partial}{\partial x} - e^{z} \frac{\partial}{\partial y} \right), \ e_{3} = \frac{\partial}{\partial z}$$

Finally, non-zero pairs $\lambda \neq \mu$ of the same sign give non-constant curvature left-invariant metrics on \mathbb{S}^3 .

The case of pairwise different $\{\lambda_i\}$ is considerably harder. For example, $\lambda_1 = -\lambda_2 = 1$, $\lambda_3 = 0$ gives the standard metric (again a Thurston geometry) on the solvable group Sol^3 . If we identify it with \mathbb{R}^3 then the frame takes the form

$$\mathbf{e}_{1} = \frac{1}{\sqrt{2}} \left(\mathbf{e}^{-z} \frac{\partial}{\partial x} + \mathbf{e}^{z} \frac{\partial}{\partial y} \right), \ \mathbf{e}_{2} = \frac{1}{\sqrt{2}} \left(\mathbf{e}^{-z} \frac{\partial}{\partial x} - \mathbf{e}^{z} \frac{\partial}{\partial y} \right), \ \mathbf{e}_{3} = \frac{\partial}{\partial z}$$

Using some examples of minimal surfaces found by L. Masaltsev (2006), we can get from our harmonicity criterion that, in particular,

- the minimal surface z = 0 has harmonic Gauss map;
- the totally geodesic surfaces x = 0 and y = 0 have non-harmonic Gauss maps.

If G is not unimodular then there exist an orthonormal frame $\{e_1,e_2,e_3\}$ on $\mathfrak g$ such that

$$[e_2, e_3] = (1 - \lambda)(\mu e_1 - e_2), \ [e_3, e_1] = (1 + \lambda)(e_1 + \mu e_2), \ [e_1, e_2] = 0$$

for some $\lambda, \mu \in \mathbb{R}$.

If G is not unimodular then there exist an orthonormal frame $\{e_1, e_2, e_3\}$ on g such that

$$[e_2, e_3] = (1 - \lambda)(\mu e_1 - e_2), \ [e_3, e_1] = (1 + \lambda)(e_1 + \mu e_2), \ [e_1, e_2] = 0$$

for some $\lambda, \mu \in \mathbb{R}$.

In particular, for $\lambda = \mu = 0$ the sectional curvature of this metric is -1, so we get the Lie group structure on the hyperbolic space \mathbb{H}^3 . For the half-space (z > 0) model with the usual metric $\frac{1}{z^2}(dx^2 + dy^2 + dz^2)$ we then have

$$e_1 = z \frac{\partial}{\partial x}, \ e_2 = z \frac{\partial}{\partial y}, \ e_3 = z \frac{\partial}{\partial z}.$$

In this case Φ is harmonic if and only if

$$Y_1(H) + \sin lpha (H - b_{11}) = 0,$$

 $Y_2(H) + \sin lpha b_{12} = 0,$

where α is the angle between Y_3 and e_3 .

In this case Φ is harmonic if and only if

$$Y_1(H) + \sin \alpha \left(H - b_{11} \right) = 0,$$

$$Y_2(H) + \sin \alpha \, b_{12} = 0,$$

where α is the angle between Y_3 and e_3 .

Then similarly to the previous theorem we can prove

Theorem

A complete connected surface in the hyperbolic space \mathbb{H}^3 is CMC with the harmonic Gauss map if and only if it is a horosphere $z = z_0$ parallel to the sphere at infinity.

Thank you!

CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025 1

16 / 17

э

< ⊒ >

- N. do Espirito-Santo, S. Fornari, K. Frensel, J. Ripoll. Constant mean curvature hypersurfaces in Lie group with bi-invariant metric, Manuscripta Math. 111 (2003), no. 4, 173-194.
- L. Masaltsev. Minimal surfaces in standard three-dimensional geometry *Sol*³. J. Math. Phys., Anal., Geom., 2(1) (2006), 104-110.
- J. Milnor. Curvatures of left invariant metrics on Lie groups. Adv. in Math., 21(3) (1976), 293-329.
- E.V. Petrov, The Gauss map of submanifolds in the Heisenberg group, Diff. Geometry and its Applications, 29 (2011), 516-532.
- E.A. Ruh, J. Vilms. The tension field of the Gauss map. Trans. Amer. Math. Soc., 149 (1970), 569-573.