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Let M be an (immersed smooth) hypersurface in an (n + 1)-dimensional
Lie group G with a left-invariant Riemannian metric. Consider a natural
generalization of the Gauss map of a hypersurface in En+1:

Definition

The left-invariant Gauss map Φ: M → RPn of M is defined by

Φ(p) = dpLp−1(NpM),

where NpM is the normal space of N at p, Lp−1 is the left translation in G .

Definition

The left-invariant Gauss map Φ: M → Sn of an oriented M is defined by

Φ(p) = dpLp−1(ηp),

where η is the unit normal vector field of M.

Here elements of RPn and Sn are identified with 1-dimensional subspaces
and unit vectors respectively in the Lie algebra g of G .
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Let (M, g) and (N, h) be Riemannian manifolds, M be compact.

Definition

A map Φ: M → N is called harmonic if it is a stationary point of the
energy functional

Φ 7→ E (Φ) =

∫
M

e(Φ)dVg ,

where e(Φ) = 1
2 Trg (Φ

∗h) is the energy density function.

The corresponding Euler-Lagrange equation has the form

τ(Φ) = Trg BΦ = 0,

where BΦ ∈ Γ(TM∗ ⊗ TM∗ ⊗ Φ−1TN) is the second fundamental form of
Φ, defined in the obvious notation by

BΦ(X ,Y ) = (∇h)XdΦ(Y )− dΦ((∇g )XY ).

Eugene Petrov CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025 3 / 17



Let (M, g) and (N, h) be Riemannian manifolds, M be compact.

Definition

A map Φ: M → N is called harmonic if it is a stationary point of the
energy functional

Φ 7→ E (Φ) =

∫
M

e(Φ)dVg ,

where e(Φ) = 1
2 Trg (Φ

∗h) is the energy density function.

The corresponding Euler-Lagrange equation has the form

τ(Φ) = Trg BΦ = 0,

where BΦ ∈ Γ(TM∗ ⊗ TM∗ ⊗ Φ−1TN) is the second fundamental form of
Φ, defined in the obvious notation by

BΦ(X ,Y ) = (∇h)XdΦ(Y )− dΦ((∇g )XY ).

Eugene Petrov CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025 3 / 17



The field τ(Φ) = Trg BΦ ∈ Γ(Φ−1TN) is called the tension field of Φ.
Using it we can extend the definition to the case of non-compact M:

Definition

A map Φ: M → N is called harmonic if τ(Φ) = 0.

In particular,

Proposition

Φ: M → En is harmonic if and only if ∆gΦ
a = 0 for all a.

(T. Takahashi, 1966) Φ: M → Sn ↪→ En+1 is harmonic if and only if
∆gΦ

a = −2e(Φ)Φa for all a.

Here ∆g is the Riemannian Laplacian of (M, g).
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Let’s endow RPn (or S3) with its standard Riemannian metric of constant
curvature.

Theorem (E.A. Ruh, J. Vilms, 1970)

The Gauss map Φ of a connected hypersurface M in En+1 is harmonic if
and only M is of constant mean curvature (CMC).

Theorem (N. do Esṕırito-Santo, S. Fornari, K. Frensel, J. Ripoll,
2011)

The (left-invariant) Gauss map Φ of a connected hypersurface M in a Lie
group G with a biinvariant metric is harmonic if and only M is CMC.

In particular, it is true for groups En+1, SO(3) (and its universal covering
S3 ∼= SU(2)) with metrics of constant curvature.
In fact, the Ruh – Vilms theorem is true for submanifolds of an arbitrary
codimension with ∇H = 0, but its higher-codimension generalizations to
the Lie groups do not take place even for biinvariant metrics and totally
geodesic submanifolds.
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The next example shows that the generalization of Ruh – Vilms theorem is
not true for general left-invariant metrics and left-invariant Gauss maps (in
the following, we will consider such maps by default).

The (2m + 1)-dimensional Heisenberg Lie group Nil2m+1 can be identified
with R2m+1 in such a way that left-invariant fields

Xi =
∂

∂x i
− y i

2

∂

∂z
, i = 1,m, Yi =

∂

∂y i
+

x i

2

∂

∂z
, i = 1,m, Z =

∂

∂z
.

form a basis of its Lie algebra with non-zero brackets [Xi ,Yi ] = Z ,
i = 1,m. Consider the left-invariant metric on Nil2m+1 such that this
frame is orthonormal.

Theorem (E. P., 2011)

If M is a CMC hypersurface in Nil2m+1 with the harmonic Gauss map Φ
then M is vertical, i.e., the field Z is tangent to it. If it is complete then
M = M1 × R is a cylinder over a CMC hypersurface M1 in E2n.

In particular, for m = 1 complete connected CMC surfaces in Nil3 with
harmonic Gauss maps are vertical Euclidean planes and vertical Euclidean
round cylinders.
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To prove the previous theorem we obtained a general criterion of
harmonicity for Φ. For surfaces it takes the following form:

Proposition

Let M be a surface in an 3-dimensional Lie group G with a left-invariant
Riemannian metric ⟨·, ·⟩, its Riemannian connection ∇ and its Ricci tensor
Ric. Let {Y1,Y2} be an orthonormal frame of TpM at some p ∈ M, {bij}
be the coefficients of the second fundamental form of M at p with respect
to this basis, H be its mean curvature, and Y3 be a unit normal vector to
M at p. Denote by {Y1,Y2,Y3} also the continuations of these vectors by
left-invariant fields on G . Then the Gauss map Φ of M is harmonic at p
(i.e., its tension field vanishes at p) if and only if for j = 1, 2

Ric(Y3,Yj) +
∑
1⩽i⩽2

〈
∇∇Yi

Yi
Y3 +∇Yi

∇Yi
Y3,Yj

〉
−

−Yj(2H)− 2H ⟨∇Y3Y3,Yj⟩+ 2
∑

1⩽i ,k⩽n

bik ⟨∇Yi
Yk ,Yj⟩ = 0.
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Let us use a well-known description by J. Milnor (1976) of left invariant
metrics on a three-dimensional connected Lie group G . If G is unimodular,
i.e., Tr adx = 0 for each x ∈ g, then there exists an orthonormal frame
{e1, e2, e3} of g such that

[e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3

for some {λi} ⊂ R. Then the formulae from the previous proposition can
be rewritten in the terms of these coefficients.

The equality λ1 = λ2 = λ3 means that adx = [x , ·] is skew-adjoint for
each x ∈ g, i.e., the metric is biinvariant. These are constant curvature
metrics on E3 (for λi = 0), SO(3) and its universal covering S3 ∼= SU(2)
(for λi ̸= 0). For this case the harmonicity criterion takes the form

Y1(2H) = Y2(2H) = 0,

so indeed Φ is harmonic if and only if M is CMC.
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Let only two of {λi} be equal, say (without loss of generality)
λ1 = λ1 = λ ̸= µ = λ3. This means that adx is skew-adjoint only for x
proportional to e3, so the metric is right invariant with respect to a
one-dimensional subgroup H = exp(Re3), but not biinvariant.

In this case Φ is harmonic if and only if

Y1(2H) + (λ− µ) sin 2α (H + b22) = 0,

Y2(2H)− 1

2
(λ− µ) sin 2α

(
(λ− µ) sin2 α+ 2b12

)
= 0,

where α is the angle between Y3 and e3.
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This allows us to prove the following:

Theorem

Let a left invariant metric on a connected three-dimensional unimodular
Lie group G be right invariant with respect to a one-dimensional subgroup
H ⊂ G , but not biinvariant, and let M be a connected surface in G . Then
from any two of the following claims the third follows:

1 M is CMC;

2 the Gauss map Φ of M is harmonic;

3 M is either everywhere orthogonal to the one-dimensional foliation
generated by H (is horizontal) or is composed of leaves of this
foliation (is vertical).

Indeed, if the claim 3 holds then sin 2α = 0, so claims 1 and 2 are
equivalent. If for a CMC surface M with harmonic Φ we assume that the
claim 3 is not true, we can express {bij} from the equalities above, and
then the Codazzi equations lead to a contradiction.
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In particular, λ = 0, µ ̸= 0 corresponds to the 3-dimensional Heisenberg
group Nil3. As the orthogonal distribution to e3 is non-integrable, there
are only vertical CMC surfaces with harmonic Φ, so a previous theorem for
the 3-dimensional case follows.

For λ ̸= 0, µ = 0 we have the group E(2) of orientation-preserving

Euclidean plane isometries. It is solvable, so its universal cover Ẽ(2) can
be identified with R3, and the metric is Euclidean. The integral
trajectories of e3 are vertical straight lines.

Corollary

Any connected complete CMC surface in Ẽ(2) with the harmonic Gauss
map is a vertical Euclidean round cylinder or a vertical or horizontal
Euclidean plane.
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be identified with R3, and the metric is Euclidean. The integral
trajectories of e3 are vertical straight lines.

Corollary

Any connected complete CMC surface in Ẽ(2) with the harmonic Gauss
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Non-zero λ and µ of different signs correspond to the group SL(2,R). In
particular, for λ = 1, µ = −1 we have the standard metric (a Thurston

geometry) on SL(2,R) and its universal covering ˜SL(2,R). The latter is
also the universal covering of T1H2 with the Sasaki metric, i.e., the
half-space {(x , y , z) ∈ R3 | y > 0}, and

e1 = y cos z
∂

∂x
+ y sin z

∂

∂y
− cos z

∂

∂z
,

e2 = −y sin z
∂

∂x
+ y cos z

∂

∂y
+ sin z

∂

∂z
, e3 =

∂

∂z
,

so the integral trajectories of e3 are vertical straight lines. Their
orthogonal distribution is again non-integrable.

Corollary

Any connected complete CMC surface in ˜SL(2,R) with the harmonic
Gauss map is a vertical Euclidean round cylinder or a vertical Euclidean
plane.
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Finally, non-zero pairs λ ̸= µ of the same sign give non-constant curvature
left-invariant metrics on S3.

The case of pairwise different {λi} is considerably harder. For example,
λ1 = −λ2 = 1, λ3 = 0 gives the standard metric (again a Thurston
geometry) on the solvable group Sol3. If we identify it with R3 then the
frame takes the form

e1 =
1√
2

(
e−z ∂

∂x
+ ez

∂

∂y

)
, e2 =

1√
2

(
e−z ∂

∂x
− ez

∂

∂y

)
, e3 =

∂

∂z
.

Using some examples of minimal surfaces found by L. Masaltsev (2006),
we can get from our harmonicity criterion that, in particular,

the minimal surface z = 0 has harmonic Gauss map;

the totally geodesic surfaces x = 0 and y = 0 have non-harmonic
Gauss maps.
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If G is not unimodular then there exist an orthonormal frame {e1, e2, e3}
on g such that

[e2, e3] = (1− λ)(µe1 − e2), [e3, e1] = (1 + λ)(e1 + µe2), [e1, e2] = 0

for some λ, µ ∈ R.

In particular, for λ = µ = 0 the sectional curvature of this metric is −1, so
we get the Lie group structure on the hyperbolic space H3. For the
half-space (z > 0) model with the usual metric 1

z2
(dx2 + dy2 + dz2) we

then have

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z
.
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In this case Φ is harmonic if and only if

Y1(H) + sinα (H − b11) = 0,

Y2(H) + sinα b12 = 0,

where α is the angle between Y3 and e3.

Then similarly to the previous theorem we can prove

Theorem

A complete connected surface in the hyperbolic space H3 is CMC with the
harmonic Gauss map if and only if it is a horosphere z = z0 parallel to the
sphere at infinity.
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Thank you!

Eugene Petrov CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025 16 / 17



Selected references

N. do Espirito-Santo, S. Fornari, K. Frensel, J. Ripoll. Constant mean
curvature hypersurfaces in Lie group with bi-invariant metric,
Manuscripta Math. 111 (2003), no. 4, 173-194.

L. Masaltsev. Minimal surfaces in standard three-dimensional
geometry Sol3. J. Math. Phys., Anal., Geom., 2(1) (2006), 104-110.

J. Milnor. Curvatures of left invariant metrics on Lie groups. Adv. in
Math., 21(3) (1976), 293-329.

E.V. Petrov, The Gauss map of submanifolds in the Heisenberg
group, Diff. Geometry and its Applications, 29 (2011), 516-532.

E.A. Ruh, J. Vilms. The tension field of the Gauss map. Trans.
Amer. Math. Soc., 149 (1970), 569-573.

Eugene Petrov CMC surfaces with harmonic Gauss maps in 3-dimensional Lie groups 27.05.2025 17 / 17


