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Abstract. In the paper we discuss certain classes of vector distributions in the tangent
bundles to manifolds, obtained by series of applications of the so-called generalized Cartan
prolongations (gCp). The classical Cartan prolongations deal with rank-2 distributions
and are responsible for the appearance of the Goursat distributions. Similarly, the so-
called special multi-flags are generated in the result of successive applications of gCp’s.
Singularities of such distributions turn out to be very rich, although without functional
moduli of the local classification. The paper focuses on special 2-flags, obtained by sequences
of gCp’s applied to rank-3 distributions. A stratification of germs of special 2-flags of
all lengths into singularity classes is constructed. This stratification provides invariant
geometric significance to the vast family of local polynomial pseudo-normal forms for special
2-flags introduced earlier in [Mormul P., Banach Center Publ., Vol. 65, Polish Acad. Sci.,
Warsaw, 2004, 157-178]. This is the main contribution of the present paper. The singularity
classes endow those multi-parameter normal forms, which were obtained just as a by-product
of sequences of gCp’s, with a geometrical meaning.

Key words: generalized Cartan prolongation; special multi-flag; special 2-flag; singularity
class
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1 Introduction and main theorem

The aim of the current paper is to present a new and rather rich stratification of singularities
of (special) 2-flags which naturally generalize 1-flags. Before doing that, it will be useful to
briefly recall 1-flags and their singularities. These are, in the contemporary terminology, rank-2
and corank > 2 subbundles D C T'M in the tangent bundle to a smooth manifold M, together
with the tower of consecutive Lie squares D C [D,D] C [[D,D],[D,D]] C --- satisfying the
property that the linear dimensions of tower’s members are 2,3,4,... at every point in M. (In
(dim M — 2) steps the tower reaches the full tangent bundle TM.) These objects had emerged
in the papers [7, 21, 6] and were later popularized in a book by Goursat in the 1920s. In the
result, such distributions D are now called the Goursat distributions, or sometimes the Cartan—
Goursat distributions. The respective flags are called the Goursat flags. Although this definition
is quite restrictive, still such flags exist in all lengths. Indeed, for every s > 2, the canonical
contact system C*® (the jet bundle or the Cartan distribution in the terminology of [9]) on the
jet space J*(1,1) is a Goursat distribution of corank s; its flag has length s. However, each
distribution C® is homogeneous because its germs at every two points are equivalent by a local
diffeomorphism of J*(1,1). Therefore, these contact systems have no singularities. It should be
noted that nowadays the contact systems on J*(1,1) are also known under the name ‘Goursat
normal forms’ and are characterized as such in [3] (Theorem 5.3 in Chapter II).

*This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The full collection
is available at http://www.emis.de/journals/SIGMA /Cartan.html
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Special 2-flags in lengths not exceeding four:
a study in strong nilpotency of distributions

Piotr Mormul* and Fernand Pelletier

Abstract

In the recent years, a number of issues concerning distributions generating 1-
flags (called also Goursat flags) has been analyzed. Presently similar questions are
discussed as regards distributions generating multi-flags. (In fact, only so-called
special multi-flags, to avoid functional moduli.) In particular and foremost, special
2-flags of small lengths are a natural ground for the search of generalizations of
theorems established earlier for Goursat objects. In the present paper we locally
classify, in both C* and C* categories, special 2-flags of lengths not exceeding four.
We use for that the known facts about special multi-flags along with fairly recent
notions like strong nilpotency of distributions. In length four there are already 34
orbits, the number to be confronted with only 14 singularity classes — basic invariant
sets discovered in 2003.

As a common denominator for different parts of the paper, there could serve the fact
that only rarely multi-flags’ germs are strongly nilpotent, whereas all of them are
weakly nilpotent, or nilpotentizable (possessing a local nilpotent basis of sections).

1 Definition of special k-flags and their singularities

Special k-flags (the natural parameter k& > 2 is sometimes called ‘width’) of lengths
7 2 1 can be defined in several equivalent ways, like in [KRub], [PaR], [M2]. All these
approaches can be reduced to one transparent definition. (The reduction is via two early
Bryant’s results from [B], one lemma from [PaR], and the answer to a recent question of
Zhitomirskii, cf. p. 165 in [M2].)

Namely, for a distribution D on a manifold M, the tower of consecutive Lie squares of D
D=D"cD'cD™?c---cD'cD’=TM
(that is, [D7, D] = DI~  for j =r, r—1,..., 2, 1) should consist of distributions of ranks,

starting from the smallest object D": k+1,2k+1,...,7k+1, (r+ 1)k +1 = dim M
such that

* Supported by Polish KBN grant 2 PO3A 010 22.
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To our knowledge the general theory behind Goursat multi-flags made their first appearance in the works of A. Kumpera
and J.L. Rubin [11]. P. Mormul has also been very active in breaking new ground [15], and developed new combinatorial
tools to investigate the normal forms of these distributions. Our work is founded on a recent article [22] by Shibuya and
Yamaguchi that demonstrates a universality result which essentially states that any Goursat multi-flag arises as a type of
lifting of the tangent bundle of R",

In this paper we concentrate on the problem of classifying Goursat multi-flags of small length. Specifically, we will
consider Goursat 2-flags of length up to 4. Goursat 2-flags exhibit many new geometric features our old Goursat 1-flags did
not possess [19].

Our main result states that there are 34 inequivalent Goursat 2-flags of length 4 and we provide the exact number of Goursat 2-flags
for each length k < 3 as well.

Our approach is constructive. Due to space limitations we will write down only a few instructive examples.

In {22] Shibuya and Yamaguchi establish that every Goursat 2-flag germ appears somewhere within the following tower
of fiber bundles:

= PA2) - P32) - P2R) - PL2) - PP2) = RS, 1)

and the fiber of the projection map from PX(2) to PX~1(2) is a real projective plane, and adding the dimensions one obtains
the dimension formula dim(P%(2)) =3 +2k.

Each manifold P*(2) is equipped with a rank 3 nonholonomic distribution Ay, and there is a simple geometric relation
between the distributions pertaining to neighboring levels. The construction of A is recursive, and depends upon the
geometric data at the base level P9,

The distributions Ay in P*(2) are themselves Goursat 2-flags of length k. Moreover, two Goursat 2-flags are equivalent
if and only if the corresponding points of the Monster Tower are mapped one to the other by a symmetry of the tower at

level k. The paper [22] also establishes that all such symmetries are prolongations of diffeomorphisms of R3. The above
observations tell us that

the classification problem for Goursat 2-flags is equivalent to the classification of points within the Monster Tower up to symmetry.

In order to solve this latter problem we use a combination of two methods, namely the singular curve method as in 18]
and a new method that we call the isotropy method. A variant of the isotropy method was already used in [18], and it is
somewhat inspired by E. Cartan’s moving frame method |8].

We would like to mention that P. Mormul and Pelletier [17] have proposed an alternative sclution to the classification
problem. In their classification work, they employed Mormul’s results and tools that came from his recent work with Goursat
n-flags. In [16], Mormul discusses two coding systems for special 2-flags and showed that the two coding systems are the
same. One system is the extended Kumpera-Ruiz system, which is a coding system used to describe 2-flags. The other is called
singularity class coding, which is an intrinsic coding system that describes the sandwich diagram [18] associated to 2-flags.
A brief outline on how these coding systems relate to the RV T coding is discussed in [6]. Then, building upon Mormul's
work in {14}, Mormul and Pelletier used the idea of strong nilpotency of special multi-flags, along with the properties of
his two coding systems, to classify these disiributions up to length 4. Our 34 orbits agree with theirs.

In Section 2 we acquaint ourselves with the main definitions necessary for the statements of our main results, and a few
explanatory remarks to help the reader progress through the theory with us. Section 3 consists of the statements of our
main results. In Section 4 we discuss the basic tools and ideas that will be needed to prove cur various results. Section 5 is
devoted to technicalities and the actual proofs. Finally, in Section 6, we provide a quick summary of our findings and other
questions to pursue concerning the Monster Tower.

For the record, we have also included Appendix A where our lengthy computations are contained.

2. Preliminaries and main definitions

A geomeiric distribution hereafter denotes a linear subbundie of the tangent bundle with fibers of constant dimension.

2.1. Prolongation

Let the pair (Z, A) denote a manifold Z of dimension d equipped with a distribution A of rank r. We denote by IP(A)
the projectivization of A. As a manifold,
P(A) =21
has dimension d + (r — 1).

Example 2.1. Take Z =R3, A = TR viewed as a rank 3 distribution. Then Z! is simply the trivial bundle R® x P2, where
the factor on the right denotes the projetive plane.



The number of different singularity classes of special 2-flags of length r > 3 is

o i

— )

(One focuses attention on the position of the first letter 2 in the class’ code, remembering
that the codes satisfy the least upward jumps rule: no letter 2 or else that letter at the
very end — account for the summand 2, that letter at the one before last position accounts
for the summand 3, and so on. Then that letter at the second position accounts for the
biggest summand 3"2.)

243+3 44372 =

1.5 Moduli among parameters in pseudo-normal forms.

Once the singularity classes (in the present paper — only for 2-flags) and faithful to them
pseudo-normal forms EKR have been recalled, one of the first imposing questions is that
about the status of real parameters entering the EKR forms. The same question con-
cerning parameters in normal forms for germs of 1-flags, sparked by the benchmark work
[KRui], had remained without answer over a considerable period 1982-97.

With examples of moduli of 1-flags at hand, it is not long to produce an example of
an EKR parameter that is a true modulus. To this end, choose the following family of
EKR’s 1.2.1.2.1.2.1 sitting (see Theorem 2) in the singularity class 1.2.1.2.1.2.1:

dxy — x2dt =0 dy; — y2dt =0
dt — x3dxe =0 dys — ysdxe =0
dzs — (1 + z4)dze =0 dys — yadzo =0
dzy — T5dxs =0 dys — ysdzy =0 (2)
dzs — (1 + z¢)dzs =0 dys — yedzs = 0
dzs — x7dxe =0 dye — yrdxe =0
dz; — (¢ + xg)dzs = 0 dy; — ysdzs =0,

where ¢ € R is an arbitrary real parameter and these objects are considered as germs
at 0 € RY(¢, z1, y1,. .., Ts, ¥s)- (Due to the Pfaffian equations’ description, it is not
instantly visible that the objects sit in an EKR. Yet, by the time we prove the statement
in Appendix (Section 8), it will be clear that the proposed objects belong to a concrete
EKR class of normal forms). The proof is being postponed to keep the exposition balanced.

Remark 2. (a) The I-parameter family in (2) is, as it stands, written for the width k£ = 2
(there are only two columns of Pfaffian equations). However, a similar family could be
proposed for any bigger width. The reader can easily figure out the potential 3rd, ...,
kth columns, all constructed on the pattern of the second column, with no additional
constants (the non-zero constants, decisive for the example, always in the first column
only). The proof for the analogous objects inside the EKR class 1.2.1.2.1.2.1 in the space
of special k-flags, k > 2, would be essentially the same, only the basic vector equation
would be longer and so would be equations on the levels X and X3.

8



SYMMETRIES OF SPECIAL 2-FLAGS

[length || # sing classes [ # RV classes || # orbits |

2 2 2 2
3 5 6 (
4 14 23 34
5 41 98 7
6 122 433 77
7 365 1935 00

195

Question. How to partition a given singularity class of special 2-flags into (much finer!) RV
classes of [4]? And, all the more so, for special m-flags, m > 27!

5.1. Singularity classes of special 2-flags refining the sandwich classes. We first divide
all existing germs of special 2-flags of length r into 2"! pairwise disjoint sandwich classes in
function of the geometry of the distinguished spaces in the sandwiches (at the reference point for
a germ) in Sandwich Diagram on p. 3, and label those aggregates of germs by words of length
over the alphabet {1,2} starting (on the left) with 1, having the second cipher 2 iff D?(p) C F(p),
and for 3 < j < r having the j-th cipher 2 iff DI(p) C L(D=2)(p). More details about the
sandwich classes are given in section 1.2 in [18].

This construction puts in relief possible non-transverse situations in the sandwiches. For
instance, the second cipher is 2 iff the line D?(p)/L(D')(p) is not transverse, in the space
D'(p)/L(D"), to the codimension one subspace F(p)/L(D"')(p), and similarly in further sand-
wiches. This resembles very much the KR-classes of Goursat germs constructed in [11]. In
length r the number of sandwiches has then been 7 — 2 (and so the # of KR classes 2"~2). For
2-flags the number of sandwiches is r — 1 because the covariant distribution of D! comes into
play and gives rise to one additional sandwich.

Passing to the main construction underlying our present contribution, we refine further the
singularities of special 2-flags and recall from [15] how one passes from the sandwich classes to
singularity classes. In fact, to any germ F of a special 2-flag associated is a word W(F) over the
alphabet {1,2,3}, called the ‘singularity class’ of F. It is a specification of the word ‘sandwich
class’ for F (this last being over, reiterating, the alphabet {1,2}) with the letters 2 replaced
either by 2 or 3, in function of the geometry of F.

In the definition that follows we keep fixed the germ of a rank-3 distribution D at p € M,
generating on M a special 2-flag F of length .

Suppose that in the sandwich class C of D at p there appears somewhere, for the first time
when reading from the left to right, the letter 2 = j,, (jm is, as we know, not the first letter
in C) and that there are in C other letters 2 = js, m < s, as well. We will specify each such
js to one of the two: 2 or 3. (The specification of that first j,, = 2 will be made later and
will be trivial.) Let the nearest 2 standing to the left to js be 2 = j;, m <t < s. These two
‘neighbouring’ letters 2 are separated in C by [ = s —¢ — 1 > 0 letters 1.

The gist of the construction consists in taking the small flag of precisely original flag’s member
D2,

DP=VacWVcVeacVacVsC--,
Viy1 = Vi +[D?*, Vj], then focusing precisely on this new flag’s member V5;43. Reiterating, in the
t-th sandwich, there holds the inclusion: F(p) D D?*(p) when t = 2, or else L(D*"?)(p) D D*(p)
when t > 2. This serves as a preparation to our punch line (cf. [15, 17]).

Surprisingly perhaps, specifying j, to 3 goes via replacing D by Va3 in the relevant sandwich
inclusion at the reference point. That is to say, js = 2 is being specified to 3 if and only if
F(p) D Var3(p) (when t = 2) or else L(D*=2)(p) D Vai43(p) (when ¢ > 2) holds.
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to the variable z5. In the down-to-earth practice it means that we are to work
with the following 1-parameter subfamily of EKR’s 1.2.1.2.1:

dz0 — x1dt =0 dy0 — yldt =0

dt —x2dzl1 =0 dyl —y2dzx1 =0

dz2 - (1+4+23)dz1 =0 dy2 —y3dzl =0
dzxl — z4dz3 =0 dy3 — (1+y4)dz3 =0 (30)

dzd — £5dz3 =0 dyd — (c+y5)dz3 =0.

Geometrically this is a second order singularity: the mentioned tangency con-

24+1= 3.

Here ¢ € R is an arbitrary real parameter and these objects are understood as
germs at 0 € R¥3(¢, 20, 0, =1, y1,..., z5, y5). We want to show that for every
two different values c and ¢ the distribution germs (30) are non-equivalent. To
show this we start to analyze an arbitrary local diffeomorphism

¢ = (T, X0,Y0, X1,Y1,..., X5 Y5): (R3,0) «

assumed to conjugate these two distributions. The general limitations on the
function components of such a ® are exactly as in the two previous sections. As
to the additional limitations, in the discussed situation only the 2nd and 4th
letters in the code 1.2.1.2.1 are not ‘1’ — the class sits inside the sandwich class
1.2.1.2.1. Hence it is known from the beginning about the components X2 and
X4 that

o X2(t, 20, 40, 21, y1, 22, y2) = 22 H(¢, z0, y0, x1, y1, 2, y2),
o X4(t, 20,..., y4) = 24 G(t, 20, ..., x4, y4)

for certain invertible at 0 functions G, H. Moreover, identically as in the two
previous sections, there must exist an invertible at 0 function f, f | # 0, such
that, altogether,

/ 1 ] ( 1
22| =1 2H| X1
yl Y1
z4 il 1| 4G o
y2 Y2 ‘
14@8 f(») 1+ X3
d ®(p) K 59 = RS ¢ T (31)
1 1
1+y4 1+Y4
5 ] X5
c+yd K c+Y5
0 ] *
0 *

15



where p = (¢, 20, y0,..., 5, y5). In view of the first SEVEN components of
the diffeomorphism @ depending only on t, z0,..., 2, y2, the upper SEVEN
among the scalar equations contained (or: hidden) in (31) can be divided side-
wise by z4. While the upper THREE among them can be divided sidewise by
the product of variables 2 z4.

Agree, as in the preceding sections, to call thus simplified scalar equations ‘level
17, ‘level X0, ‘level X4’, etc, in function of the row of d $(p) being involved.
For instance, the level Y'0 equation is the §,0—component scalar equation in (31)
divided sidewise by z2 x4.

The relation binding the constants ¢ and ¢ is encoded in level Y4:
Y4$3+Y4y3+CY4y410= Ef'o (32)

Observation 1.
Y4$3 lo = Y4y3 !0 = 1),

Proof. The component function Y4 is expressed in terms of the function Y3 in
level Y3:
z4(x) + Y353 +Y3,3(1 +9y4) = f(1+Y4). (33)

In (33) there also show up the functional coefficient f. It is explicitly got in
level X3 in (31):
f = z4(%) + X323 + X3,3(1+ y4). (34)

Level X1 in (31) tells us that the function coefficient
fG depends only on t, 20, y0,..., 22, y2. (35)

In consequence, both the component functions X3 and Y'3 showing up in lev-
els X2 and Y2, respectively, are affine in the variable 3. Knowing this, we
differentiate sidewise with respect to 3 at 0 the relations (33) and (34):

FY4:3 0= Y32323+Y3y323— fa3 o = Y3y323 — fu3 |0,

fz3 lo = X3z3:3+ X3y303 |0 = X3y323 |0 -
These relations yield together

FY423 0= Y3y323 — X3y323 |0 - (36)

By the same reason as above the functions X3 and Y3 are affine in y3, and
differentiating now the relations (33) and (34) sidewise with respect to y3 at 0,

fY4y3 IO == Y3:L'3y3 +Y3y3y3 “‘fy3 IO == Y3x3y3 _fy3 |07

fys o= X333y3+ X3y3y3 |0 = X34343 |0,

which relations together imply

fY4y3 |0 =Y3z3y3— X3z3y3]0 - (37)

16



Yet the functions: X3 (available in level X2) and Y3 (available in level Y2) do
not have second order terms 23 y3, neither. So the quantities on the right hand
sides in (36) and (37) vanish. Observation 1 is proved.

In view of Observation 1 the key relation (32) reduces to
CY4y4|0 = Ef'o (38)

Lemma. X3,3 |0 = 0.

Proof. The equation at level X2 reads in explicit terms
22(-+)+ (H + 32 Hyo) (1 4+ 23) + 22y3 Hyo = fG(1 + X3)

Differentiating this equation sidewise with respect to y3 at 0 and remembering
that neither H nor fG depends on y3 (cf. (35)), 0 = fG X3,3 |o. Lemma is
proved.

We are now in a position to replace Y4 in (38) by Y'3. Namely, differentiating
the relation (33) sidewise with respect to y4 at 0,

Y3yslo= fya+fY4dyslo=X3y3+fY4|o= fY4]o
by Lemma. Whence the key relation (38) reduces to
cY3,3l0o =¢f%|o- (39)
Observation 2. f|o = 1.

Proof. From (34) and Lemma there is
flo= X343+ X3y3]0= X3a3 o -

Let us write, for the reason of legibility only, f |0 = fo, fG |o = (fG)o,
H |¢o = Hy. Then, in the Taylor expansion of the function X3, X3 = foz3+- - -,
and also

fG = (fG)p +h.o.t., H = Hy + h.o-t. (40)

where in both the higher order terms above there is no coordinate x3 whatsoever
(cf. also (35)). Let us write in explicit terms the equation in level X2

22(--- )+(Ho+h.o.t.+x2 H wz) (1+23)+22(---) = ((fG)o+h.o.t.) (1+fox3+---).

- Now, by comparing the zero order terms in (41) o
Ho = (fG)o, (42)

while comparing the (z3)! terms in (41) yields
Ho = (fG)o- fo. (43)

17



The relations (42) and (43) together yield fo = 1. Observation 2 is proved.

The relation (33) enhanced by Observation 2 clearly implies
Y3:3+Y3y3|0= 1 (44)

Remark. At this moment what only remains to show is that the first summand
Y3 .3 |0 in (44) vanishes. This follows from a rather compact series of inferences.

Firstly, level Y'1 written in explicit terms
fG-Y2=22(%)+Y1, +y2(x)

implies that
0=fG-Y2|o=Y1. o (45)

and
JG-Y241 |o= Y1z |o. (46)

Secondly, level Y0 written in explicit terms
JGH -Y1=Y0;+21Y0, +ylY0,
implies
0=(fGHY1),,,, lo = 0+2(fGH),, Y 1s1+fCH-Y1 o101 [0 = FGHY1 4101 |0

by (45). Hence
Y241 lo=0 (47)

by (46). Thirdly, level Y2 written in explicit terms
JG-Y3=22(%)+Y2,1 +y2(x)+ (1 +23)Y2,0 + y3Y2,

implies that
O:Y2$1+Y2$2I0 (48)

and also that
JG-Y3z3lo=Y2,2]0.- (49)

Now (47) and (48) yield Y242 |o = 0. This latter equality coupled with (49)
implies Y3,3 |0 = 0.
As it has been already noticed, this information ends the entire proof, implying
by (44) that Y3,3 |0 = 1. Hence, all in all, giving ¢- 1 = ¢- 1 (compare (39)
~ and Observation 2).

Every two different values c and ¢ of the parameter in the (pseudo) normal
form (30) are non-equivalent.
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